# NATURAL RESOURCES TECHNICAL REPORT

# Corridor K Project Graham County, North Carolina

**STIP A-0009C** 



# THE NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION 14

# **TABLE OF CONTENTS**

| 1.0 INTRODUCTION                                                      | 1  |
|-----------------------------------------------------------------------|----|
| 2.0 METHODOLOGY                                                       | 1  |
| 3.0 TERRESTRIAL COMMUNITIES                                           | 1  |
| 4.0 PROTECTED SPECIES                                                 |    |
| 4.1 Endangered Species Act Protected Species                          |    |
| 4.2 Bald and Golden Eagle Protection Act                              |    |
| 5.0 WATER RESOURCES                                                   |    |
| 6.0 REGULATORY CONSIDERATIONS                                         |    |
| 6.1 Clean Water Act Waters of the U.S                                 |    |
| 6.2 Construction Moratoria                                            | 20 |
| 6.3 N.C. River Basin Buffer Rules                                     |    |
| 6.4 Rivers and Harbors Act Section 10 Navigable Waters                |    |
| 7.0 REFERENCES                                                        | 21 |
| Appendix A Figures                                                    |    |
| Figure 1. Vicinity Map                                                |    |
| Figure 2. Project Study Area Map                                      |    |
| Figure 3. Jurisdictional Features Map                                 |    |
| Figure 4. Terrestrial Communities Map                                 |    |
| Appendix B Qualifications of Contributors                             |    |
| Appendix C Bat Survey Report                                          |    |
| · · · · · · · · · · · · · · · · · ·                                   |    |
|                                                                       |    |
|                                                                       |    |
| LIST OF TABLES                                                        |    |
| Table 1. Coverage of terrestrial communities in the study area        |    |
| Table 2. ESA federally protected species listed for Graham County     |    |
| Table 3. Streams in the study area                                    |    |
| Table 4. Surface waters in the study area                             |    |
| Table 5. Characteristics of jurisdictional streams in the study area  |    |
| Table 6. Characteristics of jurisdictional wetlands in the study area | 17 |

#### 1.0 INTRODUCTION

As part of the Corridor K project, the North Carolina Department of Transportation (NCDOT) proposes improvements to US 129, NC 143 and NC 28 from Robbinsville to Stecoah in Graham County, which include both new location and improve existing options (STIP A-0009C) (Figures 1 and 2). The following Natural Resources Technical Report (NRTR) has been prepared to assist in the preparation of a document for the purposes of the National Environmental Policy Act (NEPA).

#### 2.0 METHODOLOGY

All work was conducted in accordance with the NCDOT Environmental Coordination and Permitting's Preparing Natural Resources Technical Reports Procedure and the latest NRTR Template November 2017. Field work was conducted on June 2 through 30, and July 1 through 12, 2019. At the time of this report, no verification meetings have been held regarding jurisdictional features identified in the study area. The principal personnel contributing to the field work and document is provided in Appendix B.

#### 3.0 TERRESTRIAL COMMUNITIES

Thirteen terrestrial communities were identified in the study area. Figure 4 shows the location and extent of the terrestrial communities. Terrestrial community data are presented in the context of total coverage of each type within the study area (Table 1).

Table 1. Coverage of terrestrial communities in the study area

| Community             | Dominant Species (scientific name)     | Coverage (ac.) |
|-----------------------|----------------------------------------|----------------|
| Montane Oak-Hickory   | White Oak (Quercus alba)               |                |
| Forest                | Chestnut Oak (Quercus prinus)          | 302.7          |
|                       | Sourwood (Oxydendrum arboreum)         |                |
| Dry-Mesic Oak-        | Shortleaf Pine (Pinus echinata)        |                |
| Hickory Forest        | Virginia Pine (Pinus virginiana)       | 2.6            |
|                       | White Oak (Quercus alba)               |                |
| Rich Cove Forest      | American Beech (Fagus grandifolia)     |                |
|                       | Sweet Birch (Betula lenta)             | 542.7          |
|                       | Tulip Poplar (Liriodendron tulipifera) |                |
| Acid Cove Forest      | Red Maple (Acer rubrum)                |                |
|                       | Sweet Birch (Betula lenta)             | 165.6          |
|                       | Great Rhododendron (Rhododendron       | 103.0          |
|                       | maximum)                               |                |
| White Pine Forest     | Eastern White Pine (Pinus strobus)     |                |
|                       | Tulip Poplar (Liriodendron tulipifera) | 72.3           |
|                       | Red Maple (Acer rubrum)                |                |
| Canada Hemlock Forest | Eastern Hemlock (Tsuga canadensis)     |                |
|                       | Tulip Poplar (Liriodendron tulipifera) | 1.4            |
|                       | White Oak (Quercus alba)               |                |
| Montane Alluvial      | Sycamore (Platanus occidentalis)       |                |
| Forest                | Black Willow (Salix nigra)             | 34.1           |
|                       | Sweetgum (Liquidambar styraciflua)     |                |

1

| Community              | Dominant Species (scientific name)       | Coverage (ac.) |
|------------------------|------------------------------------------|----------------|
| Seep                   | American Hornbeam (Carpinus caroliniana) |                |
|                        | Red Maple (Acer rubrum)                  | 0.3            |
|                        | Sedge ( <i>Carex</i> sp.)                |                |
| Floodplain Pool        | Black Elderberry (Sambucus nigra)        |                |
|                        | Northern Spicebush (Lindera benzoin)     | 0.02           |
|                        | Jewelweed (Impatiens capensis)           |                |
| Headwater Forest       | Red Maple (Acer rubrum)                  |                |
|                        | Black Elderberry (Sambucus nigra)        | 3.7            |
|                        | Sedges (Carex sp.)                       |                |
| Non-Tidal Freshwater   | Needle Spikerush (Eleocharis acicularis) |                |
| Marsh                  | Sedges (Carex sp.)                       | 5.9            |
|                        | Common Rush (Juncus effusus)             |                |
| Agriculture            | Fescue (Festuca sp.)                     |                |
| _                      | Orchardgrass (Dactylus glomerate)        | 156.3          |
|                        | Corn (Zea mays)                          |                |
| Maintained / Disturbed | Fescue (Festuca sp.)                     |                |
|                        | Crabgrass (Digitaria sp.)                | 507.2          |
|                        | Sawtooth Blackberry (Rubus argutus)      |                |
|                        | Total                                    | 1794.8         |

#### 4.0 PROTECTED SPECIES

### 4.1 Endangered Species Act Protected Species

As of June 27, 2018, the United States Fish and Wildlife (USFWS) lists ten federally protected species, under the Endangered Species Act (ESA) for Graham County, North Carolina (Table 2). At the request of the USFWS, small whorled pogonia was also evaluated. For each species, a discussion of the presence or absence of habitat is included below along with the Biological Conclusion rendered based on coordination with USFWS and survey results in the study area.

| Table 2. | ESA feder | ally protected | l species listed fo | r Graham County |
|----------|-----------|----------------|---------------------|-----------------|
|          |           |                |                     |                 |

| Scientific Name              | Common Name                       | Federal<br>Status | Habitat<br>Present | Biological<br>Conclusion |
|------------------------------|-----------------------------------|-------------------|--------------------|--------------------------|
| Glyptemys muhlenbergii       | Bog turtle                        | T(S/A)            | N/A                | Not required             |
| Glaucomys sabrinus coloratus | Carolina northern flying squirrel | Е                 | No                 | No Effect                |
| Myotis grisescens            | Gray bat                          | Е                 | No                 | No Effect                |
| Myotis sodalis               | Indiana bat                       | Е                 | Yes                | Unresolved               |
| Myotis septentrionalis       | Northern long-eared bat           | T                 | Yes                | Unresolved               |
| Erimonax monachus            | Spotfin chub                      | T                 | No                 | No Effect                |
| Alasmidonta raveneliana      | Appalachian elktoe                | Е                 | No                 | No Effect                |
| Bombus affinis *             | Rusty-patched bumble bee          | Е                 | N/A                | Not Required             |
| Spiraea virginiana           | Virginia spiraea                  | T                 | Yes                | No Effect                |
| Gymnoderma lineare           | Rock gnome lichen                 | Е                 | No                 | No Effect                |

E - Endangered

#### **Bog Turtle**

USFWS Optimal Survey Window: April 1 – October 1 (visual surveys); April 1-June 15 (optimal for breeding/nesting); May 1-June 30 (trapping surveys)

#### Biological Conclusion: Not Required

Species listed as threatened due to similarity of appearance do not require Section 7 consultation with the USFWS. Suitable habitat including open, groundwater supplied, graminoid dominated wetlands along riparian corridors or on seepage slopes, was observed along the floodplain of Sweetwater Creek within the project study area. Surveys completed by "Project Bog Turtle" in 1999 did not find occurrences of bog turtle within the project study area (FHWA 2008). Additionally, a review of the NCNHP database (June 2019), revealed no known occurrences of this species within 1.0 mile of the project study area.

### **Carolina Northern Flying Squirrel**

USFWS Optimal Survey Window: May – October; coldest days in coldest winter months (nest box surveys)

#### Biological Conclusion: No effect

Suitable habitat for the Carolina northern flying squirrel including ecotone between coniferous and mature northern hardwood forest at elevations above 4,500 feet above mean sea level was not observed within the project study area. Additionally, a review of the NCNHP database (July 2019), revealed no known occurrences of this species within 1.0 mile of the project study area.

T – Threatened

T (S/A) – Threatened due to similarity of appearance

<sup>\* -</sup> Historic record

#### **Gray Bat**

USFWS Optimal Survey Window: May 15 – August 15 (summer); January 15 – February 15

### Biological Conclusion: No Effect

Gray bats live in caves, often utilizing different caves for summer roosting and winter hibernating. A structure survey was completed on July 8-9, 2019 which included a site search and review of cave and mine databases (Appendix C). No caves or abandoned mines occur within or near the project corridor. No suitable habitat for gray bats was found within the project corridor. Additionally, a review of NCNHP database (June 2019 dataset) indicates no known occurrences within 1.0 mile of the study area.

#### **Indiana Bat**

USFWS Recommended Survey Window: May 15-August 15 (summer); January 15-February 15 (winter)

### Biological Conclusion: Unresolved

No Indiana bats were captured in surveys conducted for the project study area in 2001 or 2008-2009 (NCDOT 2009). However, the eastern end of the project study area intersects a buffer for a known Indiana bat maternity roost. A mine/cave and bridge/structure survey was completed on July 8-9, 2019 and no Indiana bats were found (Appendix C). Additionally, a review of NCNHP database (June 2019 dataset) indicates no known occurrences within 1.0 mile of the study area. Because of the potential for forest loss from the project and proximity to a known maternity roost, formal consultation with USFWS is required for Indiana bat. A biological conclusion of May Affect, Not Likely to Adversely Affect is being proposed within the Biological Assessment for Indiana Bat.

#### **Northern Long-Eared Bat**

USFWS Optimal Survey Window: June 1 – August 15

#### Biological Conclusion: Unresolved

Nineteen (19) northern long-eared bats (NLEB) were captured in surveys conducted for the project study area in 2001 and 25 NLEB were captured in 2008-2009 (NCDOT 2009). No NLEB were found during a mine/cave and bridge/structure survey completed on July 8-9, 2019 (Appendix C). Because of a record indicative of a maternity roost, formal consultation for NLEB is being conducted in conjunction with formal consultation for Indiana bats. A biological conclusion of May Affect, Not Likely to Adversely Affect is being proposed within the Biological Assessment for NLEB.

### **Spotfin chub**

USFWS Optimal Survey Window: September – November (tributaries); year-round (large river)

Biological Conclusion: No Effect

Suitable habitat for spotfin chub in the form of moderate to large streams with good current is not present in the study area. The only population known in Graham County is related to an effort by the USFWS and NC Wildlife Resource Commission to re-introduce spotfin chub to the Cheoah River downstream of Lake Santeetlah. A review of NCNHP database (June 2019 dataset) indicates no known occurrences of the spotfin chub within 1.0 mile of the study area.

#### **Appalachian Elktoe**

USFWS Optimal Survey Window: year round

Biological Conclusion: No Effect

Suitable habitat for Appalachian elktoe includes streams with course sandy and gravelly substrates often mixed with cobble and boulders as well as in cracks of bedrock and in relatively silt-free areas with moderate flow. Past surveys indicate that habitat is marginal at best within the study area (FHWA 2008). A review of NCNHP database (June 2019 dataset) indicates one historic occurrence of the Appalachian elktoe within 1.0 mile of the study area. Although historic records exist for Tulula Creek, the species is believed to have been extirpated from Tulula Creek (FHWA 2008). Surveys were completed in 2008 within Tulula Creek and no shells or live specimens were discovered (FHWA 2008). Additionally, an Aquatic Resource Analysis (AQUA) completed by the US Forest Service in 2000 stated that there was no habitat within the Nantahala National Forest areas of the project area (USFS 2000).

#### Rusty-patched bumble bee

USFWS Survey Window: April-September

Biological Conclusion: Not Required

Suitable habitat for the rusty-patched bumble bee includes a variety of habitats including prairies, woodlands, marshes, agricultural landscapes, and residential parks and gardens. According to USFWS, the rusty patched bumble bee was historically collected or observed within Graham County and no known occurrences have occurred since the 1970's. Additionally, a review of NCNHP database (June 2019 dataset), indicates one historic occurrence of the rusty-patched bumble bee within 1.0 mile of the study area. It has been determined by USFWS that no Section 7 consultation or surveys are required outside of Swain County in North Carolina.

#### Virginia Spiraea

USFWS Optimal Survey Window: May-early July

Biological Conclusion: No Effect

Suitable habitat for Virginia spiraea including flood-scoured, high-gradient sections of rocky river banks of second and third order streams was identified within the project study area. A survey for Virginia spiraea was completed in June 2019 within the project study area and no individuals were found. Additionally, no occurrences were discovered during past surveys in 1999, 2003 and 2007 within the project study area (FHWA 2008). A review of NCNHP database (June 2019 dataset) indicates no known occurrences within 1.0 mile of the study area.

#### **Rock Gnome Lichen**

USFWS Optimal Survey Window: year round

Biological Conclusion: No Effect

Suitable habitat for rock gnome lichen including high elevation coniferous forests on rocky outcrops or cliff habitats is not present in the study area. A review of NCNHP database (June 2019 dataset) indicates no known occurrences of the rock gnome lichen within 1.0 mile of the study area.

#### Small whorled pogonia

USFWS Optimal Survey Window: mid-May - early-July

Biological Conclusion: No Effect

Suitable habitat for small whorled pogonia, including open, dry deciduous woods, was observed within the project study area. A survey for small whorled pogonia was completed in June 2019 within the project study area and no individuals were found. Additionally, a review of the NCNHP database (June 2019 dataset), revealed no known occurrences of this species within 1.0 mile of the project study area.

#### 4.2 Bald and Golden Eagle Protection Act

The bald eagle is protected under the Bald and Golden Eagle Protection Act and enforced by the USFWS. Habitat for the bald eagle primarily consists of mature forests in proximity to large bodies of open water for foraging. Large dominant trees are utilized for nesting sites, typically within 1.0 mile of open water.

A desktop-GIS assessment of the project study area, as well as the area within a 1.13-mile radius (1.0 mile plus 660 feet) of the project limits, was performed on May 30, 2019 using 2015 color aerial orthoimagery and the 2016 National Hydrography Database (NHD). Three bodies of water, including Santeetlah Lake, large enough or sufficiently open to be considered potential feeding sources were identified within the search radius. A survey of the project study area and the area within 660 feet of the project limits was conducted during the delineation field work. No nests or eagles were observed.

6

### **5.0 WATER RESOURCES**

Water resources in the study area are part of the Little Tennessee basin [U.S. Geological Survey (USGS) Hydrologic Unit 06010202 and 06010204]. One hundred fifty-nine (159) streams were identified in the study area. The location of the identified streams is shown in Figure 3.

Table 3. Streams in the study area

| Stream Name            | Map ID               | NCDWR<br>Index<br>Number | Best usage<br>Classification | Bank<br>Height<br>(ft) | Bankfull<br>Width<br>(ft) | Depth (in) |
|------------------------|----------------------|--------------------------|------------------------------|------------------------|---------------------------|------------|
| Beech Creek            | Beech<br>Creek       | 2-190-3-3                | WS-III                       | 7                      | 20                        | 6          |
| Carver Branch          | Carver<br>Branch     | 2-130-3-1                | С                            | 5                      | 10                        | 3          |
| Cody Branch            | Cody<br>Branch       | 2-130-1                  | С                            | 5                      | 20                        | 6          |
| Dry Creek              | Dry Creek            | 2-130-2                  | С                            | 3                      | 8                         | 12         |
| Edwards Branch         | Edwards<br>Branch    | 2-130-3                  | С                            | 2                      | 4                         | 8          |
| Harwood Branch         | Harwood<br>Branch    | 2-190-3-5                | WS-III                       | 3                      | 5                         | 6          |
| Orr Branch             | Orr Branch           | 2-190-3-2                | WS-III                       | 2                      | 5                         | 6          |
| Pigpen Branch          | Pigpen<br>Branch     | 2-190-3-5-1              | WS-III                       | 3                      | 6                         | 2          |
| Slay Bacon Branch      | Slay Bacon<br>Branch | 2-190-3-7                | WS-III                       | 7                      | 6                         | 6          |
| Stecoah Creek          | Stecoah<br>Creek     | 2-130                    | C; Tr                        | 2.5                    | 12                        | 8          |
| Sweetwater Creek       | Sweetwater<br>Creek  | 2-190-3-(0.5)            | WS-III; Tr                   | 9                      | 25                        | 12         |
| Tulula Creek           | Tulula<br>Creek      | 2-190-2-(0.5)            | WS-III; Tr                   | 12                     | 35                        | 36         |
| Tulula Creek           | Tulula<br>Creek      | 2-190-2-(14)             | WS-III; Tr,<br>CA            | 12                     | 35                        | 36         |
| Wolf Creek             | Wolf Creek           | 2-117                    | С                            | 2                      | 4                         | 4          |
| UT to Tulula Creek     | SA                   | 2-190-2-(0.5)            | WS-III; Tr                   | 4                      | 6                         | 0          |
| UT to Tulula Creek     | SB                   | 2-190-2-(0.5)            | WS-III; Tr                   | 1                      | 4                         | 0          |
| UT to Tulula Creek     | SC                   | 2-190-2-(0.5)            | WS-III; Tr                   | 2                      | 4                         | 6          |
| UT to Tulula Creek     | SD                   | 2-190-2-(0.5)            | WS-III; Tr                   | 4                      | 5                         | 3          |
| UT to Tulula Creek     | SE                   | 2-190-2-(0.5)            | WS-III; Tr                   | 1                      | 4                         | 5          |
| UT to Sweetwater Creek | SF                   | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 3                         | 1          |
| UT to Sweetwater Creek | SG                   | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 2                         | 3          |

| Stream Name            | Map ID | NCDWR<br>Index<br>Number | Best usage<br>Classification | Bank<br>Height<br>(ft) | Bankfull<br>Width<br>(ft) | Depth (in) |
|------------------------|--------|--------------------------|------------------------------|------------------------|---------------------------|------------|
| UT to Sweetwater Creek | SH     | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 3                         | 3          |
| UT to Sweetwater Creek | SI     | 2-190-3-(0.5)            | WS-III; Tr                   | 2.5                    | 5                         | 6          |
| UT to Sweetwater Creek | SJ     | 2-190-3-(0.5)            | WS-III; Tr                   | 4                      | 2                         | 2          |
| UT to Sweetwater Creek | SK     | 2-190-3-(0.5)            | WS-III; Tr                   | 3                      | 3                         | 1          |
| UT to Sweetwater Creek | SL     | 2-190-3-(0.5)            | WS-III; Tr                   | 4                      | 4                         | 1          |
| UT to Sweetwater Creek | SM     | 2-190-3-(0.5)            | WS-III; Tr                   | 1.5                    | 3                         | 3          |
| UT to Sweetwater Creek | SN     | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 4                         | 4          |
| UT to Sweetwater Creek | SO     | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 4                         | 4          |
| UT to Sweetwater Creek | SP     | 2-190-3-(0.5)            | WS-III; Tr                   | 0.5                    | 1                         | 3          |
| UT to Pigpen Branch    | SQ     | 2-190-3-5-1              | WS-III                       | 3                      | 6                         | 2          |
| UT to Sweetwater Creek | SR     | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 2                         | 1          |
| UT to Sweetwater Creek | SS     | 2-190-3-(0.5)            | WS-III; Tr                   | 0.5                    | 2                         | 1          |
| UT to Sweetwater Creek | ST     | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 4                         | 6          |
| UT to Sweetwater Creek | SU     | 2-190-3-(0.5)            | WS-III; Tr                   | 3                      | 8                         | 6          |
| UT to Sweetwater Creek | SV     | 2-190-3-(0.5)            | WS-III; Tr                   | 3                      | 4                         | 4          |
| UT to Sweetwater Creek | SW     | 2-190-3-(0.5)            | WS-III; Tr                   | 3                      | 4                         | 4          |
| UT to Sweetwater Creek | SX     | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 6                         | 6          |
| UT to Sweetwater Creek | SY     | 2-190-3-(0.5)            | WS-III; Tr                   | 4                      | 4                         | 1.5        |
| UT to Sweetwater Creek | SZ     | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 1.5                       | 1          |
| UT to Sweetwater Creek | SAA    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 1.5                       | 0.5        |
| UT to Sweetwater Creek | SAB    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 2                         | 0.5        |
| UT to Sweetwater Creek | SAC    | 2-190-3-(0.5)            | WS-III; Tr                   | 0.5                    | 2                         | 6          |
| UT to Sweetwater Creek | SAD    | 2-190-3-(0.5)            | WS-III; Tr                   | 5                      | 4                         | 6          |
| UT to Sweetwater Creek | SAE    | 2-190-3-(0.5)            | WS-III; Tr                   | 0.5                    | 1                         | 3          |
| UT to Sweetwater Creek | SAF    | 2-190-3-(0.5)            | WS-III; Tr                   | 0.5                    | 3                         | 3          |
| UT to Sweetwater Creek | SAG    | 2-190-3-(0.5)            | WS-III; Tr                   | 0.5                    | 3                         | 3          |
| UT to Sweetwater Creek | SAH    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 2                         | 0.6        |
| UT to Sweetwater Creek | SAI    | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 5                         | 6          |
| UT to Sweetwater Creek | SAJ    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 4                         | 4          |
| UT to Sweetwater Creek | SAK    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 4                         | 4          |
| UT to Sweetwater Creek | SAL    | 2-190-3-(0.5)            | WS-III; Tr                   | 0.5                    | 3                         | 3          |
| UT to Sweetwater Creek | SAM    | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 5                         | 6          |
| UT to Sweetwater Creek | SAN    | 2-190-3-(0.5)            | WS-III; Tr                   | 1.5                    | 3.5                       | 4          |
| UT to Sweetwater Creek | SAO    | 2-190-3-(0.5)            | WS-III; Tr                   | 1.5                    | 3.5                       | 4          |
| UT to Sweetwater Creek | SAP    | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 3                         | 6          |
| UT to Sweetwater Creek | SAQ    | 2-190-3-(0.5)            | WS-III; Tr                   | 1.5                    | 3.5                       | 4          |

| Stream Name                   | Map ID | NCDWR<br>Index<br>Number | Best usage<br>Classification | Bank<br>Height<br>(ft) | Bankfull<br>Width<br>(ft) | Depth (in) |
|-------------------------------|--------|--------------------------|------------------------------|------------------------|---------------------------|------------|
| UT to Sweetwater Creek        | SAR    | 2-190-3-(0.5)            | WS-III; Tr                   | 4                      | 4.5                       | 6          |
| UT to Sweetwater Creek        | SAS    | 2-190-3-(0.5)            | WS-III; Tr                   | 2.5                    | 8                         | 6          |
| UT to Sweetwater Creek        | SAT    | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 3                         | 6          |
| UT to Sweetwater Creek        | SAU    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 2.5                       | 6          |
| UT to Sweetwater Creek        | SAV    | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 3                         | 2          |
| UT to Sweetwater Creek        | SAW    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 2                         | 1          |
| UT to Sweetwater Creek        | SAX    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 2                         | 2          |
| UT to Sweetwater Creek        | SAY    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 2                         | 2          |
| UT to Sweetwater Creek        | SAZ    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 2                         | 3          |
| UT to Sweetwater Creek        | SBA    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 1                         | 1          |
| UT to Stecoah Creek           | SBB    | 2-130                    | C; Tr                        | 0.5                    | 1                         | 1          |
| UT to Carver Branch           | SBC    | 2-130-3-1                | С                            | 1                      | 3                         | 3          |
| UT to Carver Branch           | SBD    | 2-130-3-1                | С                            | 1                      | 3                         | 2          |
| UT to Johnson's Gap<br>Branch | SBE    | 2-131-2                  | С                            | 3                      | 8                         | 1          |
| UT to Johnson's Gap<br>Branch | SBF    | 2-131-2                  | С                            | 4                      | 4                         | 1          |
| UT to Carver Branch           | SBG    | 2-130-3-1                | С                            | 0.5                    | 1                         | 0.5        |
| UT to Carver Branch           | SBH    | 2-130-3-1                | С                            | 0.25                   | 3                         | 1          |
| UT to Carver Branch           | SBI    | 2-130-3-1                | С                            | 2                      | 8                         | 1          |
| UT to Carver Branch           | SBJ    | 2-130-3-1                | С                            | 4                      | 2                         | 2          |
| UT to Carver Branch           | SBK    | 2-130-3-1                | С                            | 3                      | 5                         | 3          |
| UT to Carver Branch           | SBL    | 2-130-3-1                | С                            | 2                      | 1                         | 1          |
| UT to Carver Branch           | SBM    | 2-130-3-1                | С                            | 0.6                    | 1                         | 1          |
| UT to Carver Branch           | SBN    | 2-130-3-1                | С                            | 2                      | 5                         | 2          |
| UT to Carver Branch           | SBO    | 2-130-3-1                | С                            | 1                      | 1                         | 0.25       |
| UT to Carver Branch           | SBP    | 2-130-3-1                | С                            | 1                      | 1.5                       | 0.25       |
| UT to Carver Branch           | SBQ    | 2-130-3-1                | С                            | 2                      | 4                         | 1          |
| UT to Carver Branch           | SBR    | 2-130-3-1                | С                            | 1                      | 5                         | 1          |
| UT to Carver Branch           | SBS    | 2-130-3-1                | С                            | 1                      | 4                         | 1          |
| UT to Carver Branch           | SBT    | 2-130-3-1                | С                            | 1                      | 4                         | 1          |
| UT to Carver Branch           | SBU    | 2-130-3-1                | С                            | 3                      | 4                         | 3          |
| UT to Edwards Branch          | SBV    | 2-130-3                  | С                            | 1                      | 2                         | 2          |
| UT to Edwards Branch          | SBW    | 2-130-4                  | С                            | 1                      | 2                         | 0.5        |
| UT to Edwards Branch          | SBX    | 2-130-5                  | С                            | 0.5                    | 2                         | 1          |
| UT to Edwards Branch          | SBY    | 2-130-6                  | С                            | 2                      | 4                         | 2          |
| UT to Edwards Branch          | SBZ    | 2-130-7                  | С                            | 1                      | 3                         | 1          |

| Stream Name          | Map ID | NCDWR<br>Index<br>Number | Best usage<br>Classification | Bank<br>Height<br>(ft) | Bankfull<br>Width<br>(ft) | Depth (in) |
|----------------------|--------|--------------------------|------------------------------|------------------------|---------------------------|------------|
| UT to Edwards Branch | SCA    | 2-130-8                  | С                            | 1                      | 3                         | 2          |
| UT to Stecoah Creek  | SCB    | 2-130                    | C; Tr                        | 0.5                    | 2                         | 3          |
| UT to Stecoah Creek  | SCC    | 2-130                    | C; Tr                        | 1                      | 7                         | 3          |
| UT to Stecoah Creek  | SCD    | 2-130                    | C; Tr                        | 2                      | 5                         | 8          |
| UT to Stecoah Creek  | SCE    | 2-130                    | C; Tr                        | 3                      | 7                         | 2          |
| UT to Stecoah Creek  | SCF    | 2-130                    | C; Tr                        | 2.5                    | 7                         | 3          |
| UT to Stecoah Creek  | SCG    | 2-130                    | C; Tr                        | 3                      | 8                         | 1          |
| UT to Stecoah Creek  | SCH    | 2-130                    | C; Tr                        | 2                      | 3                         | 2          |
| UT to Cody Branch    | SCI    | 2-130-1                  | С                            | 2                      | 3                         | 4          |
| UT to Cody Branch    | SCJ    | 2-130-1                  | С                            | 2.5                    | 4                         | 3          |
| UT to Cody Branch    | SCK    | 2-130-1                  | С                            | 0.5                    | 3                         | 2          |
| UT to Cody Branch    | SCL    | 2-130-1                  | С                            | 2                      | 3                         | 4          |
| UT to Cody Branch    | SCM    | 2-130-1                  | С                            | 2                      | 4                         | 4          |
| UT to Cody Branch    | SCN    | 2-130-1                  | С                            | 0.25                   | 2                         | 1          |
| UT to Cody Branch    | SCO    | 2-130-1                  | С                            | 0.25                   | 2                         | 1          |
| UT to Stecoah Creek  | SCP    | 2-130                    | C; Tr                        | 5                      | 5                         | 3          |
| UT to Stecoah Creek  | SCQ    | 2-130                    | C; Tr                        | 1                      | 3                         | 2          |
| UT to Stecoah Creek  | SCR    | 2-130                    | C; Tr                        | 6                      | 5                         | 1          |
| UT to Stecoah Creek  | SCS    | 2-130                    | C; Tr                        | 6                      | 5                         | 1          |
| UT to Stecoah Creek  | SCT    | 2-130                    | C; Tr                        | 2                      | 2                         | 1          |
| UT to Stecoah Creek  | SCU    | 2-130                    | C; Tr                        | 1                      | 2                         | 1          |
| UT to Stecoah Creek  | SCV    | 2-130                    | C; Tr                        | 5                      | 6                         | 2          |
| UT to Stecoah Creek  | SCW    | 2-130                    | C; Tr                        | 0.25                   | 2                         | 1          |
| UT to Stecoah Creek  | SCX    | 2-130                    | C; Tr                        | 1                      | 6                         | 1          |
| UT to Stecoah Creek  | SCY    | 2-130                    | C; Tr                        | 1                      | 3                         | 2          |
| UT to Stecoah Creek  | SCZ    | 2-130                    | C; Tr                        | 2                      | 4                         | 2          |
| UT to Stecoah Creek  | SDA    | 2-130                    | C; Tr                        | 8                      | 8                         | 2          |
| UT to Stecoah Creek  | SDB    | 2-130                    | C; Tr                        | 0.5                    | 0.75                      | 0.5        |
| UT to Stecoah Creek  | SDC    | 2-130                    | C; Tr                        | 2                      | 8                         | 0.5        |
| UT to Stecoah Creek  | SDD    | 2-130                    | C; Tr                        | 0.25                   | 3                         | 1          |
| UT to Stecoah Creek  | SDE    | 2-130                    | C; Tr                        | 1                      | 2                         | 1          |
| UT to Stecoah Creek  | SDF    | 2-130                    | C; Tr                        | 2                      | 5                         | 3          |
| UT to Stecoah Creek  | SDG    | 2-130                    | C; Tr                        | 1.5                    | 7                         | 4          |
| UT to Stecoah Creek  | SDH    | 2-130                    | C; Tr                        | 1.5                    | 7                         | 4          |
| UT to Stecoah Creek  | SDI    | 2-130                    | C; Tr                        | 1.5                    | 7                         | 4          |
| UT to Stecoah Creek  | SDJ    | 2-130                    | C; Tr                        | 1                      | 5                         | 2          |

| Stream Name            | Map ID | NCDWR<br>Index<br>Number | Best usage<br>Classification | Bank<br>Height<br>(ft) | Bankfull<br>Width<br>(ft) | Depth (in) |
|------------------------|--------|--------------------------|------------------------------|------------------------|---------------------------|------------|
| UT to Stecoah Creek    | SDK    | 2-130                    | C; Tr                        | 1                      | 6                         | 2          |
| UT to Stecoah Creek    | SDL    | 2-130                    | C; Tr                        | 2                      | 4                         | 1          |
| UT to Stecoah Creek    | SDM    | 2-130                    | C; Tr                        | 2                      | 4                         | 1          |
| UT to Stecoah Creek    | SDN    | 2-130                    | C; Tr                        | 1                      | 1.5                       | 1          |
| UT to Stecoah Creek    | SDO    | 2-130                    | C; Tr                        | 0.5                    | 3                         | 1          |
| UT to Stecoah Creek    | SDP    | 2-130                    | C; Tr                        | 3                      | 7                         | 2.5        |
| UT to Stecoah Creek    | SDQ    | 2-130                    | C; Tr                        | 3                      | 4                         | 1          |
| UT to Stecoah Creek    | SDR    | 2-130                    | C; Tr                        | 2                      | 3                         | 2          |
| UT to Stecoah Creek    | SDS    | 2-130                    | C; Tr                        | 2                      | 4                         | 2          |
| UT to Stecoah Creek    | SDT    | 2-130                    | C; Tr                        | 5                      | 3                         | 5          |
| UT to Stecoah Creek    | SDU    | 2-130                    | C; Tr                        | 3                      | 3                         | 2          |
| UT to Stecoah Creek    | SDV    | 2-130                    | C; Tr                        | 0.5                    | 2                         | 3          |
| UT to Wolf Creek       | SDW    | 2-117                    | С                            | 5                      | 6                         | 4          |
| UT to Wolf Creek       | SDX    | 2-117                    | С                            | 0.5                    | 4                         | 3          |
| UT to Wolf Creek       | SDY    | 2-117                    | С                            | 0.9                    | 3                         | 5          |
| UT to Wolf Creek       | SDZ    | 2-117                    | С                            | 0.5                    | 2                         | 1          |
| UT to Wolf Creek       | SEA    | 2-117                    | С                            | 0.5                    | 5                         | 3          |
| UT to Wolf Creek       | SEB    | 2-117                    | С                            | 0.5                    | 6                         | 4          |
| UT to Wolf Creek       | SEC    | 2-117                    | С                            | 0                      | 1                         | 0.25       |
| UT to Sweetwater Creek | SED    | 2-190-3-(0.5)            | WS-III; Tr                   | 2                      | 8                         | 2          |
| UT to Edwards Branch   | SEE    | 2-130-9                  | С                            | 3                      | 5                         | 2          |
| UT to Edwards Branch   | SEF    | 2-130-10                 | С                            | 1                      | 4                         | 2          |
| UT to Carver Branch    | SEG    | 2-130-3-1                | С                            | 1                      | 1                         | 1          |
| UT to Carver Branch    | SEH    | 2-130-3-1                | С                            | 0.6                    | 1                         | 1          |
| UT to Carver Branch    | SEI    | 2-130-3-1                | С                            | 0.5                    | 4                         | 3          |
| UT to Cody Branch      | SEJ    | 2-130-1                  | С                            | 2                      | 4                         | 3          |
| UT to Cody Branch      | SEK    | 2-130-1                  | С                            | 1                      | 2                         | 1          |
| UT to Cody Branch      | SEL    | 2-130-1                  | С                            | 0.1                    | 4                         | 1          |
| UT to Cody Branch      | SEM    | 2-130-1                  | С                            | 0.25                   | 3                         | 2          |
| UT to Stecoah Creek    | SEO    | 2-130                    | C; Tr                        | 5                      | 10                        | 3          |
| UT to Sweetwater Creek | SEP    | 2-190-3-(0.5)            | WS-III; Tr                   | 1                      | 2.5                       | 6          |
| UT to Sweetwater Creek | SEQ    | 2-190-3-(0.5)            | WS-III; Tr                   | 3                      | 11                        | 1          |

There are no designated Outstanding Resources Waters (ORW), designated High Quality Waters (HQW), or water supply watersheds (WS-I or WS-II) within or within 1.0 miles downstream of the study area. The North Carolina 2018 Final 303(d) list did not identify an impaired water within the study area.

Eleven surface waters were identified in the study area (Table 4). The location of each surface water is show in Figure 3.

Table 4. Surface waters in the study area

| Surface Water | Figure 3<br>Sheet<br>Number | Jurisdictional | Map ID of<br>Connection | Area (ac) in<br>Study Area |
|---------------|-----------------------------|----------------|-------------------------|----------------------------|
| PA            | 5                           | Undetermined   | WI                      | 0.02                       |
| PB            | 7                           | Undetermined   | SN                      | 0.12                       |
| PC            | 8                           | Undetermined   | SX                      | 0.19                       |
| PD            | 8                           | Undetermined   | N/A                     | 0.06                       |
| PE            | 10                          | Undetermined   | N/A                     | 0.07                       |
| PF            | 12                          | Undetermined   | SAK                     | 0.06                       |
| PG            | 32                          | Undetermined   | N/A                     | 0.24                       |
| PH            | 31                          | Undetermined   | SCD                     | 0.59                       |
| PI            | 30                          | Undetermined   | N/A                     | 0.01                       |
| PJ            | 29                          | Undetermined   | N/A                     | 0.04                       |
| PK            | 28                          | Undetermined   | N/A                     | 0.04                       |
|               |                             |                | Total                   | 1.45                       |

### **6.0 REGULATORY CONSIDERATIONS**

#### 6.1 Clean Water Act Waters of the U.S.

One hundred and fifty-nine (159) jurisdictional streams were identified in the study area (Table 5). The location of these streams is shown on Figure 3. North Carolina Stream Assessment Method (NCSAM) and NCDWR stream identification forms are included in a separate Preliminary Jurisdictional Determination (PJD) Package for select streams. All jurisdictional streams in the study area have been designated as cold water streams for the purposes of stream mitigation.

Table 5. Characteristics of jurisdictional streams in the study area

| Map ID               | Length (ft.) | Classification Compensator Mitigation Required |              | River Basin<br>Buffer | Figure 3 Sheet Number(s) |
|----------------------|--------------|------------------------------------------------|--------------|-----------------------|--------------------------|
| Beech<br>Creek       | 1,048        | Perennial                                      | Yes          | Not Subject           | 9                        |
| Carver<br>Branch     | 8,113        | Perennial                                      | Yes          | Not Subject           | 22, 25-30                |
| Cody<br>Branch       | 2,489        | Perennial                                      | Yes          | Not Subject           | 15, 16                   |
| Dry Creek            | 904          | Perennial                                      | Yes          | Not Subject           | 18, 19                   |
| Edwards<br>Branch    | 1,600        | Perennial                                      | Yes          | Not Subject           | 29, 30                   |
| Harwood<br>Branch    | 485          | Perennial                                      | Yes          | Not Subject           | 7                        |
| Orr Branch           | 744          | Perennial                                      | Yes          | Not Subject           | 11, 12                   |
| Pigpen<br>Branch     | 581          | Perennial                                      | Yes          | Not Subject           | 7                        |
| Slay Bacon<br>Branch | 253          | Perennial                                      | Yes          | Not Subject           | 6                        |
| Stecoah<br>Creek     | 10,683       | Perennial                                      | Yes          | Not Subject           | 17, 30-32                |
| Sweetwater<br>Creek  | 28,626       | Perennial                                      | Yes          | Not Subject           | 4, 6, 7-13               |
| Tulula<br>Creek      | 12,022       | Perennial                                      | Yes          | Not Subject           | 1-3                      |
| Wolf Creek           | 2,371        | Perennial                                      | Yes          | Not Subject           | 21, 34                   |
| SA*                  | 273          | Intermittent                                   | Undetermined | Not Subject           | 1                        |
| SB                   | 116          | Intermittent                                   | Undetermined | Not Subject           | 1                        |
| SC                   | 275          | Perennial                                      | Yes          | Not Subject           | 1                        |
| SD*                  | 16           | Intermittent                                   | Undetermined | Not Subject           | 2                        |
| SE*                  | 89           | Intermittent                                   | Undetermined | Not Subject           | 3                        |
| SF                   | 39           | Intermittent                                   | Undetermined | Not Subject           | 4                        |
| SG                   | 32           | Intermittent                                   | Undetermined | Not Subject           | 4                        |
| SH                   | 61           | Intermittent                                   | Undetermined | Not Subject           | 4                        |
| SI                   | 1,041        | Perennial                                      | Yes          | Not Subject           | 4, 5                     |
| SJ                   | 164          | Intermittent                                   | Undetermined | Not Subject           | 5                        |
| SK                   | 2            | Intermittent                                   | Undetermined | Not Subject           | 5                        |
| SL                   | 92           | Intermittent                                   | Undetermined | Not Subject           | 5                        |
| SM                   | 192          | Perennial                                      | Yes          | Not Subject           | 7                        |
| SN                   | 87           | Intermittent                                   | Undetermined | Not Subject           | 7                        |
| SO                   | 151          | Intermittent                                   | Undetermined | Not Subject           | 7                        |
| SP                   | 224          | Intermittent                                   | Undetermined | Not Subject           | 7                        |
| SQ                   | 200          | Perennial                                      | Yes          | Not Subject           | 7                        |
| SR                   | 303          | Perennial                                      | Yes          | Not Subject           | 8                        |

| Map ID | Length (ft.) | Classification      | Compensatory Mitigation Required | River Basin<br>Buffer | Figure 3 Sheet Number(s) |
|--------|--------------|---------------------|----------------------------------|-----------------------|--------------------------|
| SS     | 223          | Intermittent        | Undetermined                     | Not Subject           | 8                        |
| ST     | 338          | Perennial           | Yes                              | Not Subject           | 8                        |
| SU     | 359          | Perennial           | Yes                              | Not Subject           | 8                        |
| SV     | 329          | Intermittent        | Undetermined                     | Not Subject           | 8                        |
| SW     | 111          | Intermittent        | Undetermined                     | Not Subject           | 8                        |
| SX     | 231          | Perennial           | Yes                              | Not Subject           | 8                        |
| SY     | 218          | Perennial           | Yes                              | Not Subject           | 9                        |
| SZ     | 268          | Perennial           | Yes                              | Not Subject           | 9, 10                    |
| SAA    | 111          | Perennial           | Yes                              | Not Subject           | 10                       |
| SAB    | 331          | Perennial           | Yes                              | Not Subject           | 10                       |
| SAC*   | 97           | Intermittent        | Undetermined                     | Not Subject           | 10                       |
| SAD    | 290          | Perennial           | Yes                              | Not Subject           | 11                       |
| SAE    | 70           | Perennial           | Yes                              | Not Subject           | 11                       |
| SAF    | 766          | Perennial           | Yes                              | Not Subject           | 11                       |
| SAG    | 586          | Perennial           | Yes                              | Not Subject           | 11                       |
| SAH    | 319          | Intermittent        | Undetermined                     | Not Subject           | 12                       |
| SAI    | 511          | Perennial           | Yes                              | Not Subject           | 12                       |
| SAJ    | 234          | Perennial           | Yes                              | Not Subject           | 12                       |
| SAK    | 329          | Perennial           | Yes                              | Not Subject           | 12                       |
| SAL    | 110          | Seep (Intermittent) | Undetermined                     | Not Subject           | 12                       |
| SAM    | 1,340        | Perennial           | Yes                              | Not Subject           | 12, 13                   |
| SAN    | 182          | Seep (Intermittent) | Undetermined                     | Not Subject           | 12                       |
| SAO    | 66           | Intermittent        | Undetermined                     | Not Subject           | 12, 13                   |
| SAP    | 1,664        | Perennial           | Yes                              | Not Subject           | 12, 13                   |
| SAQ    | 44           | Intermittent        | Undetermined                     | Not Subject           | 12, 13                   |
| SAR    | 527          | Perennial           | Yes                              | Not Subject           | 13, 14                   |
| SAS    | 205          | Perennial           | Yes                              | Not Subject           | 13                       |
| SAT    | 1,592        | Perennial           | Yes                              | Not Subject           | 13                       |
| SAU    | 228          | Intermittent        | Undetermined                     | Not Subject           | 13                       |
| SAV    | 549          | Perennial           | Yes                              | Not Subject           | 13, 14                   |
| SAW    | 179          | Intermittent        | Undetermined                     | Not Subject           | 13                       |
| SAX    | 2,387        | Perennial           | Yes                              | Not Subject           | 13, 22, 23               |
| SAY    | 1,098        | Perennial           | Yes                              | Not Subject           | 13                       |
| SAZ    | 73           | Seep (Intermittent) | Undetermined                     | Not Subject           | 13                       |
| SBA    | 458          | Seep (Intermittent) | Undetermined                     | Not Subject           | 13                       |
| SBB    | 259          | Intermittent        | Undetermined                     | Not Subject           | 24                       |
| SBC    | 1,877        | Perennial           | Yes                              | Not Subject           | 22, 25                   |
| SBD    | 990          | Perennial           | Yes                              | Not Subject           | 25                       |
| SBE    | 779          | Perennial           | Yes                              | Not Subject           | 26                       |
| SBF    | 95           | Seep (Intermittent) | Undetermined                     | Not Subject           | 26                       |
| SBG    | 166          | Intermittent        | Undetermined                     | Not Subject           | 25                       |
| SBH    | 131          | Seep (Intermittent) | Undetermined                     | Not Subject           | 25                       |

| Map ID | Length (ft.) | Classification      | Compensatory<br>Mitigation | River Basin<br>Buffer | Figure 3 Sheet |
|--------|--------------|---------------------|----------------------------|-----------------------|----------------|
| an.    | 1.000        |                     | Required                   | 27 6 11               | Number(s)      |
| SBI    | 1,022        | Perennial           | Yes                        | Not Subject           | 27             |
| SBJ    | 1,888        | Perennial           | Yes                        | Not Subject           | 27, 28         |
| SBK    | 1,473        | Perennial           | Yes                        | Not Subject           | 27, 28         |
| SBL    | 849          | Perennial           | Yes                        | Not Subject           | 27, 28         |
| SBM    | 148          | Intermittent        | Undetermined               | Not Subject           | 27             |
| SBN    | 1,843        | Perennial           | Yes                        | Not Subject           | 28, 29         |
| SBO    | 279          | Intermittent        | Undetermined               | Not Subject           | 29             |
| SBP    | 36           | Intermittent        | Undetermined               | Not Subject           | 29             |
| SBQ    | 19           | Seep (Intermittent) | Undetermined               | Not Subject           | 28             |
| SBR    | 177          | Seep (Intermittent) | Undetermined               | Not Subject           | 28             |
| SBS    | 249          | Seep (Intermittent) | Undetermined               | Not Subject           | 28             |
| SBT    | 157          | Intermittent        | Undetermined               | Not Subject           | 29             |
| SBU    | 281          | Intermittent        | Undetermined               | Not Subject           | 29             |
| SBV    | 373          | Perennial           | Yes                        | Not Subject           | 30             |
| SBW    | 417          | Perennial           | Yes                        | Not Subject           | 29             |
| SBX    | 25           | Intermittent        | Undetermined               | Not Subject           | 29             |
| SBY    | 959          | Perennial           | Yes                        | Not Subject           | 29, 30         |
| SBZ    | 562          | Intermittent        | Undetermined               | Not Subject           | 30             |
| SCA    | 124          | Intermittent        | Undetermined               | Not Subject           | 30             |
| SCB    | 254          | Seep (Intermittent) | Undetermined               | Not Subject           | 31             |
| SCB    | 401          | Perennial           | Yes                        | Not Subject           | 31             |
| SCC    | 1,578        | Perennial           | Yes                        | Not Subject           | 31, 32         |
| SCD    | 1,059        | Perennial           | Yes                        | Not Subject           | 31, 32         |
| SCE    | 264          | Seep (Perennial)    | Yes                        | Not Subject           | 31             |
| SCF    | 1,570        | Perennial           | Yes                        | Not Subject           | 31, 32         |
| SCG    | 264          | Perennial           | Yes                        | Not Subject           | 32             |
| SCH    | 651          | Perennial           | Yes                        | Not Subject           | 20, 32         |
| SCI    | 30           | Intermittent        | Undetermined               | Not Subject           | 15             |
| SCI    | 829          | Perennial           | Yes                        | Not Subject           | 15             |
| SCJ    | 271          | Intermittent        | Undetermined               | Not Subject           | 15             |
| SCJ    | 345          | Seep (Intermittent) | Undetermined               | Not Subject           | 15             |
| SCK    | 223          | Seep (Intermittent) | Undetermined               | Not Subject           | 15             |
| SCL    | 607          | Perennial           | Yes                        | Not Subject           | 15             |
| SCM    | 700          | Perennial           | Yes                        | Not Subject           | 16             |
| SCN    | 104          | Seep (Intermittent) | Undetermined               | Not Subject           | 16             |
| SCO    | 50           | Seep (Intermittent) | Undetermined               | Not Subject           | 16             |
| SCP    | 284          | Perennial Perennial | Yes                        | Not Subject           | 16             |
| SCQ    | 43           | Perennial           | Yes                        | Not Subject           | 16             |
| SCR    | 796          | Perennial           | Yes                        | Not Subject           | 16             |
| SCS    | 259          | Perennial           | Yes                        | Not Subject           | 16             |
| SCT    | 87           | Intermittent        | Undetermined               | Not Subject           | 16             |
|        |              |                     |                            | Not Subject           |                |
| SCU    | 41           | Seep (Intermittent) | Undetermined               | Not Subject           | 16             |

| Map ID | Length | Classification      | Compensatory | River Basin | Figure 3   |
|--------|--------|---------------------|--------------|-------------|------------|
|        | (ft.)  |                     | Mitigation   | Buffer      | Sheet      |
|        |        |                     | Required     |             | Number(s)  |
| SCV    | 354    | Perennial           | Yes          | Not Subject | 16, 17     |
| SCW    | 64     | Seep (Intermittent) | Undetermined | Not Subject | 16, 17     |
| SCX    | 692    | Perennial           | Yes          | Not Subject | 17         |
| SCY    | 1,643  | Perennial           | Yes          | Not Subject | 17         |
| SCZ    | 51     | Seep (Intermittent) | Undetermined | Not Subject | 17         |
| SDA    | 244    | Perennial           | Yes          | Not Subject | 17         |
| SDB    | 476    | Seep (Intermittent) | Undetermined | Not Subject | 17         |
| SDC    | 1,025  | Perennial           | Yes          | Not Subject | 17         |
| SDD    | 46     | Seep (Intermittent) | Undetermined | Not Subject | 17         |
| SDE    | 627    | Intermittent        | Undetermined | Not Subject | 17         |
| SDF    | 188    | Perennial           | Yes          | Not Subject | 17         |
| SDG    | 73     | Seep (Intermittent) | Undetermined | Not Subject | 17         |
| SDH    | 1,015  | Perennial           | Yes          | Not Subject | 17, 18     |
| SDI    | 136    | Perennial           | Yes          | Not Subject | 17         |
| SDJ    | 469    | Perennial           | Yes          | Not Subject | 17         |
| SDK    | 64     | Seep (Intermittent) | Undetermined | Not Subject | 17         |
| SDL    | 734    | Perennial           | Yes          | Not Subject | 17, 18     |
| SDM    | 388    | Perennial           | Yes          | Not Subject | 17, 18     |
| SDN    | 128    | Perennial           | Yes          | Not Subject | 18         |
| SDO    | 468    | Seep (Intermittent) | Undetermined | Not Subject | 18         |
| SDP    | 714    | Perennial           | Yes          | Not Subject | 20         |
| SDQ    | 533    | Perennial           | Yes          | Not Subject | 19, 20     |
| SDR    | 206    | Perennial           | Yes          | Not Subject | 21         |
| SDS    | 260    | Intermittent        | Undetermined | Not Subject | 20         |
| SDT    | 1,917  | Perennial           | Yes          | Not Subject | 21, 32, 33 |
| SDU    | 348    | Perennial           | Yes          | Not Subject | 21, 33     |
| SDV    | 252    | Seep (Intermittent) | Undetermined | Not Subject | 33         |
| SDW    | 181    | Intermittent        | Undetermined | Not Subject | 21         |
| SDW    | 406    | Perennial           | Yes          | Not Subject | 21         |
| SDX    | 79     | Perennial           | Yes          | Not Subject | 21         |
| SDY    | 177    | Perennial           | Yes          | Not Subject | 21         |
| SDZ    | 144    | Intermittent        | Undetermined | Not Subject | 21         |
| SEA    | 179    | Intermittent        | Undetermined | Not Subject | 33         |
| SEB    | 142    | Intermittent        | Undetermined | Not Subject | 34         |
| SEC    | 11     | Seep (Intermittent) | Undetermined | Not Subject | 21         |
| SED    | 256    | Perennial           | Yes          | Not Subject | 13         |
| SEE    | 58     | Intermittent        | Undetermined | Not Subject | 29         |
| SEF    | 378    | Seep (Intermittent) | Undetermined | Not Subject | 29         |
| SEG    | 19     | Intermittent        | Undetermined | Not Subject | 27         |
| SEH    | 19     | Intermittent        | Undetermined | Not Subject | 27         |
| SEI    | 303    | Seep (Intermittent) | Undetermined | Not Subject | 22, 26     |
| SEJ    | 6      | Seep (Intermittent) | Undetermined | Not Subject | 15         |

| Map ID | Length  | Classification                                | Compensatory | River Basin | Figure 3  |  |
|--------|---------|-----------------------------------------------|--------------|-------------|-----------|--|
|        | (ft.)   |                                               | Mitigation   | Buffer      | Sheet     |  |
|        |         |                                               | Required     |             | Number(s) |  |
| SEK    | 121     | Seep (Intermittent)                           | Undetermined | Not Subject | 15        |  |
| SEL    | 31      | Seep (Intermittent)                           | Undetermined | Not Subject | 15        |  |
| SEM    | 30      | Seep (Intermittent)                           | Undetermined | Not Subject | 15        |  |
| SEO    | 619     | Perennial                                     | Yes          | Not Subject | 13        |  |
| SEP    | 42      | Perennial                                     | Yes          | Not Subject | 13        |  |
| SEQ    | 135     | Perennial                                     | Yes          | Not Subject | 11        |  |
| Total  | 132,038 | *NCSAM forms are available in the PJD package |              |             |           |  |

Seventy-six (76) jurisdictional wetlands were identified within the study area (Table 6). The location of these wetlands is shown on Figure 3. All wetlands in the study area are located within the Little Tennessee basin [USGS Hydrologic Unit 06010202 and 06010204]. USACE wetland determination forms and NCWAM forms for each site are included in a separate Preliminary Jurisdictional Determination Package.

Table 6. Characteristics of jurisdictional wetlands in the study area

| Map<br>ID | NCWAM<br>Classification       | NCWAM<br>Rating | Figure 3<br>Sheet<br>Number | Hydrologic<br>Classification | Area (ac.) in<br>Study Area |
|-----------|-------------------------------|-----------------|-----------------------------|------------------------------|-----------------------------|
| WA        | Headwater Forest              | Medium          | 1                           | Riparian                     | 0.09                        |
| WB        | Headwater Forest              | High            | 1                           | Riparian                     | 0.09                        |
| WC        | Headwater Forest              | Medium          | 1                           | Riparian                     | 0.07                        |
| WD        | Headwater Forest              | High            | 4                           | Riparian                     | 0.01                        |
| WE        | Headwater Forest              | Low             | 4                           | Riparian                     | 0.03                        |
| WF        | Headwater Forest              | Low             | 4                           | Riparian                     | 0.02                        |
| WG        | Headwater Forest              | Low             | 4                           | Riparian                     | 0.00                        |
| WH        | Headwater Forest              | High            | 4                           | Riparian                     | 0.01                        |
| WI        | Non-Tidal<br>Freshwater Marsh | High            | 5                           | Riparian                     | 0.00                        |
| WJ        | Non-Tidal<br>Freshwater Marsh | High            | 6                           | Riparian                     | 0.37                        |
| WK        | Non-Tidal<br>Freshwater Marsh | Medium          | 6                           | Riparian                     | 0.07                        |
| WL        | Non-Tidal<br>Freshwater Marsh | High            | 6, 7                        | Riparian                     | 0.23                        |
| WM        | Headwater Forest              | High            | 7                           | Riparian                     | 0.06                        |
| WN        | Headwater Forest              | High            | 7                           | Riparian                     | 0.38                        |
| WO        | Headwater Forest              | High            | 7                           | Riparian                     | 0.18                        |
| WP        | Headwater Forest              | Low             | 7                           | Riparian                     | 0.25                        |
| WQ        | Non-Tidal<br>Freshwater Marsh | Medium          | 7                           | Riparian                     | 0.10                        |
| WR        | Headwater Forest              | High            | 7                           | Riparian                     | 0.86                        |

| Map<br>ID | NCWAM<br>Classification       | NCWAM<br>Rating | Figure 3<br>Sheet<br>Number | Hydrologic<br>Classification | Area (ac.) in<br>Study Area |
|-----------|-------------------------------|-----------------|-----------------------------|------------------------------|-----------------------------|
| WS        | Non-Tidal<br>Freshwater Marsh | High            | 8                           | Riparian                     | 0.33                        |
| WT        | Non-Tidal<br>Freshwater Marsh | Medium          | 8                           | Riparian                     | 0.01                        |
| WU        | Non-Tidal<br>Freshwater Marsh | Medium          | 8                           | Riparian                     | 0.21                        |
| WV        | Floodplain Pool               | High            | 8                           | Riparian                     | 0.02                        |
| ww        | Non-Tidal<br>Freshwater Marsh | High            | 8                           | Riparian                     | 0.11                        |
| WX        | Non-Tidal<br>Freshwater Marsh | High            | 8                           | Riparian                     | 0.07                        |
| WY        | Non-Tidal<br>Freshwater Marsh | Medium          | 8                           | Riparian                     | 0.12                        |
| WZ        | Non-Tidal<br>Freshwater Marsh | Low             | 8                           | Riparian                     | 0.03                        |
| WAA       | Non-Tidal<br>Freshwater Marsh | Medium          | 9                           | Riparian                     | 0.22                        |
| WAB       | Non-Tidal<br>Freshwater Marsh | Medium          | 9                           | Riparian                     | 0.02                        |
| WAC       | Non-Tidal<br>Freshwater Marsh | Medium          | 9                           | Riparian                     | 0.42                        |
| WAD       | Non-Tidal<br>Freshwater Marsh | High            | 9                           | Riparian                     | 0.46                        |
| WAE       | Non-Tidal<br>Freshwater Marsh | Medium          | 9                           | Riparian                     | 0.52                        |
| WAF       | Non-Tidal<br>Freshwater Marsh | High            | 9                           | Riparian                     | 0.38                        |
| WAG       | Non-Tidal<br>Freshwater Marsh | High            | 9, 10                       | Riparian                     | 0.31                        |
| WAH       | Non-Tidal<br>Freshwater Marsh | Medium          | 10                          | Riparian                     | 0.04                        |
| WAI       | Non-Tidal<br>Freshwater Marsh | Medium          | 10                          | Riparian                     | 0.41                        |
| WAJ       | Non-Tidal<br>Freshwater Marsh | Medium          | 10                          | Riparian                     | 0.11                        |
| WAK       | Non-Tidal<br>Freshwater Marsh | Medium          | 10                          | Riparian                     | 0.22                        |
| WAL       | Non-Tidal<br>Freshwater Marsh | Medium          | 11                          | Riparian                     | 0.20                        |
| WAM       | Non-Tidal<br>Freshwater Marsh | Medium          | 11                          | Riparian                     | 0.23                        |
| WAN       | Seep                          | High            | 11                          | Non-Riparian                 | 0.04                        |

| Map<br>ID | NCWAM<br>Classification       | NCWAM<br>Rating | Figure 3<br>Sheet<br>Number | Hydrologic<br>Classification | Area (ac.) in<br>Study Area |
|-----------|-------------------------------|-----------------|-----------------------------|------------------------------|-----------------------------|
| WAO       | Non-Tidal<br>Freshwater Marsh | High            | 11                          | Riparian                     | 0.15                        |
| WAP       | Non-Tidal<br>Freshwater Marsh | High            | 11                          | Riparian                     | 0.28                        |
| WAQ       | Seep                          | High            | 12                          | Non-Riparian                 | 0.18                        |
| WAR       | Non-Tidal<br>Freshwater Marsh | High            | 12                          | Riparian                     | 0.03                        |
| WAS       | Non-Tidal<br>Freshwater Marsh | Medium          | 12                          | Riparian                     | 0.01                        |
| WAT       | Seep                          | High            | 12, 13                      | Non-Riparian                 | 0.02                        |
| WAU       | Headwater Forest              | High            | 13                          | Riparian                     | 0.06                        |
| WAV       | Seep                          | High            | 13                          | Non-Riparian                 | 0.01                        |
| WAW       | Headwater Forest              | High            | 13                          | Riparian                     | 0.07                        |
| WAX       | Headwater Forest              | Low             | 13                          | Riparian                     | 0.05                        |
| WAY       | Non-Tidal<br>Freshwater Marsh | Medium          | 13                          | Riparian                     | 0.05                        |
| WAZ       | Non-Tidal<br>Freshwater Marsh | Medium          | 13                          | Riparian                     | 0.02                        |
| WBA       | Non-Tidal<br>Freshwater Marsh | Medium          | 13                          | Riparian                     | 0.02                        |
| WBB       | Headwater Forest              | Medium          | 24                          | Riparian                     | 0.01                        |
| WBC       | Headwater Forest              | Low             | 15                          | Riparian                     | 0.05                        |
| WBD       | Headwater Forest              | Low             | 15                          | Riparian                     | 0.02                        |
| WBE       | Headwater Forest              | High            | 17                          | Riparian                     | 0.01                        |
| WBF       | Headwater Forest              | High            | 17                          | Riparian                     | 0.01                        |
| WBG       | Headwater Forest              | High            | 17                          | Riparian                     | 0.04                        |
| WBH       | Headwater Forest              | High            | 17, 18                      | Riparian                     | 0.03                        |
| WBI       | Headwater Forest              | Low             | 19, 20                      | Riparian                     | 0.02                        |
| WBJ       | Non-Tidal<br>Freshwater Marsh | High            | 21                          | Riparian                     | 0.02                        |
| WBK       | Headwater Forest              | High            | 21                          | Riparian                     | 0.03                        |
| WBL       | Headwater Forest              | High            | 21                          | Riparian                     | 0.08                        |
| WBM       | Headwater Forest              | Low             | 21                          | Riparian                     | 0.32                        |
| WBN       | Headwater Forest              | High            | 21                          | Riparian                     | 0.01                        |
| WBO       | Headwater Forest              | High            | 21                          | Riparian                     | 0.22                        |
| WBP       | Headwater Forest              | High            | 21, 34                      | Riparian                     | 0.15                        |
| WBQ       | Headwater Forest              | High            | 34                          | Riparian                     | 0.01                        |
| WBR       | Headwater Forest              | Medium          | 31                          | Riparian                     | 0.11                        |
| WBS       | Headwater Forest              | Low             | 29                          | Riparian                     | 0.03                        |
| WBT       | Headwater Forest              | High            | 29                          | Riparian                     | 0.06                        |
| WBU       | Headwater Forest              | High            | 28, 29                      | Riparian                     | 0.21                        |

| Map<br>ID | NCWAM<br>Classification       | NCWAM<br>Rating | Figure 3<br>Sheet<br>Number | Hydrologic<br>Classification | Area (ac.) in<br>Study Area |
|-----------|-------------------------------|-----------------|-----------------------------|------------------------------|-----------------------------|
| WBV       | Non-Tidal<br>Freshwater Marsh | Low             | 25                          | Riparian                     | 0.09                        |
| WBW       | Seep                          | High            | 25, 26                      | Non-Riparian                 | 0.07                        |
| WBX       | Headwater Forest              | Low             | 25                          | Riparian                     | 0.03                        |
|           |                               | _               |                             | Total                        | 9.88                        |

#### **6.2 Construction Moratoria**

Stecoah Creek, Sweetwater Creek, and Tulula Creek were identified as trout waters and therefore, a trout moratorium may be applied to those streams and their tributaries.

#### 6.3 N.C. River Basin Buffer Rules

The study area is not within a river basin with buffer rules.

# 6.4 Rivers and Harbors Act Section 10 Navigable Waters

Streams and surface waters identified the study area were not designated by the USACE as Navigable Waters under Section 10 of the Rivers and Harbors Act.

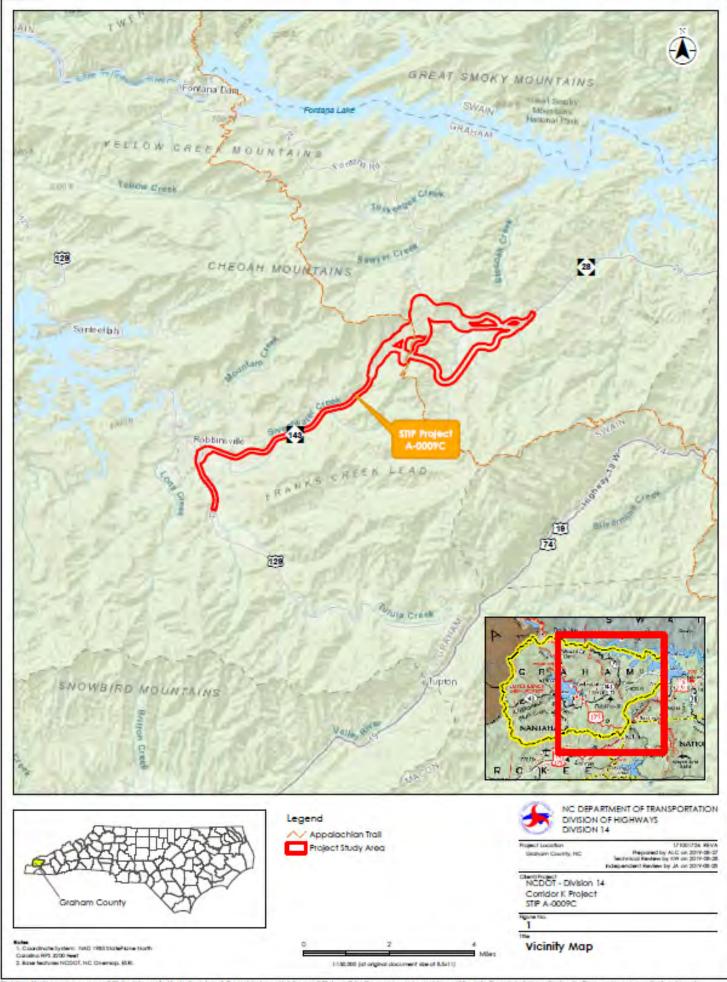
#### 7.0 REFERENCES

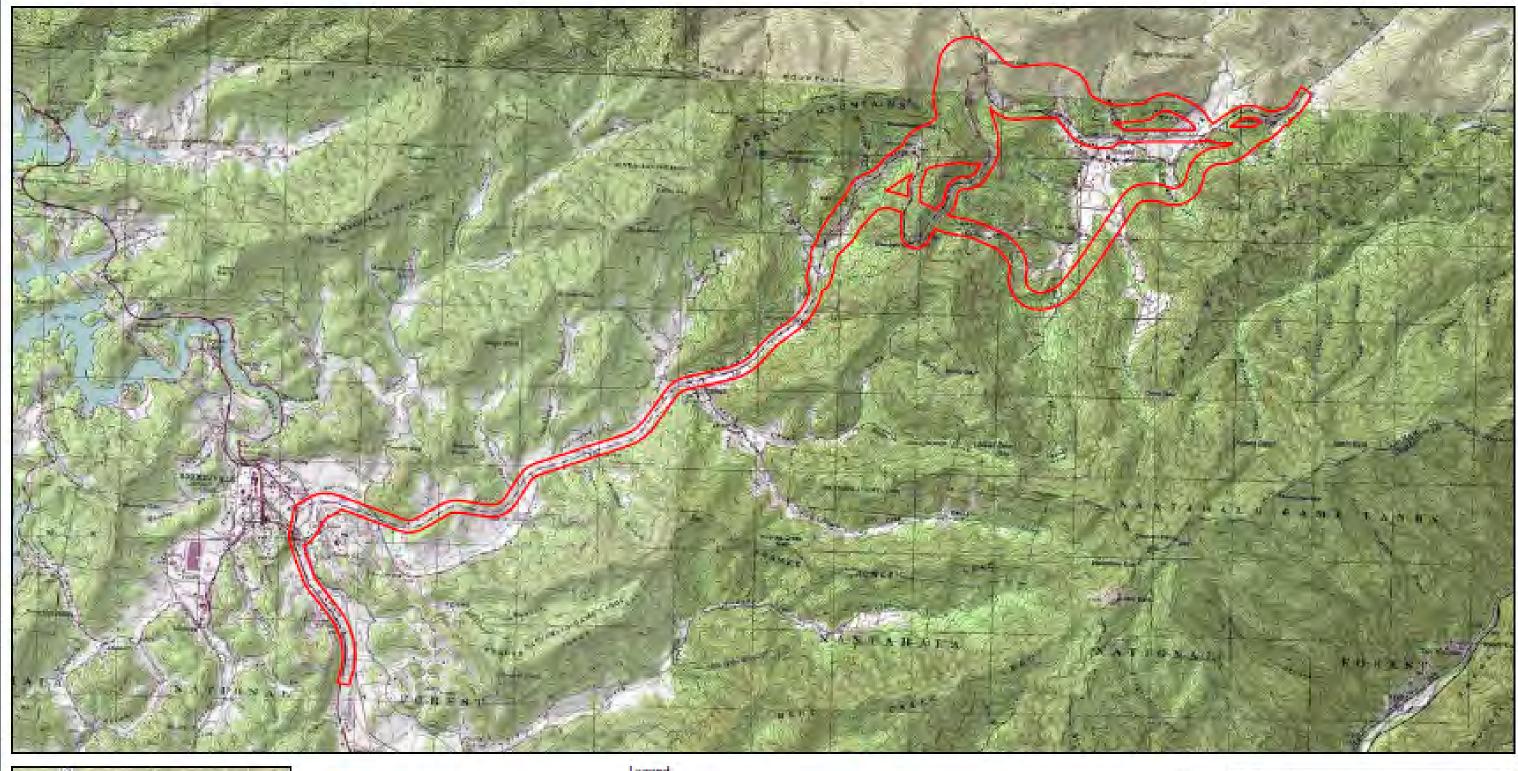
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, U. S. Army Engineer Waterways Experiment Station. Vicksburg, Mississippi.
- Environmental Laboratory. 1992. Clarification and Interpretation of the 1987 Manual, memorandum from Major General Arthur E. Williams.
- Federal Highway Administration and North Carolina Department of Transportation. 2008. Draft Supplemental Final Environmental Impact Statement. Volume I of II. US 74 Relocation, Graham County, North Carolina, from US 129 in Robbinsville to NC 28 in Stecoah. Raleigh, North Carolina.
- Harrar, E.S. and J.G. Harrar. 1962. Guide to Southern Trees. New York: Dover Publications. 2<sup>nd</sup> ed. 709 pp.
- N.C. Department of Environmental Quality. 2018. 2018 NC Category 5 Assessments "303(d) List" Final. Division of Water Resources <a href="https://files.nc.gov/ncdeq/Water%20Quality/Planning/TMDL/303d/2018/2018-NC-303-d--List-Final.pdf">https://files.nc.gov/ncdeq/Water%20Quality/Planning/TMDL/303d/2018/2018-NC-303-d--List-Final.pdf</a>
- N.C. Department of Transportation. 2009. Survey for the Federally Endangered Indiana Bat (*Myotis sodalis*) Along the Proposed Road Project A-0009B&C, From US 129 to NC 28 at Stecoah. Graham County, North Carolina.
- N.C. Department of Transportation. 2012. Invasive Exotic Plants of North Carolina. <a href="https://connect.ncdot.gov/resources/Environmental/Compliance%20Guides%20and%20Procedures/Invasive\_Exotic\_Plants\_Manual\_May\_2012.pdf">https://connect.ncdot.gov/resources/Environmental/Compliance%20Guides%20and%20Procedures/Invasive\_Exotic\_Plants\_Manual\_May\_2012.pdf</a>
- N.C. Department of Transportation. 2017a. NRTR Guidance and Template.

  Environmental Analysis Unit, Environmental Coordination and Permitting,
  Raleigh County, North Carolina. November 2017.

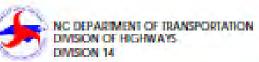
  <a href="https://connect.ncdot.gov/\_layouts/download.aspx?SourceUrl=%2Fresources%2F">https://connect.ncdot.gov/\_layouts/download.aspx?SourceUrl=%2Fresources%2F</a>

  Environmental%2FCompliance%2520Guides%2520and%2520Procedures%2FN


  RTR%2520Guidance%2520and%2520Template%2Edoc
- N.C. Department of Transportation. 2017b. Preparing Natural Resource Technical Reports. Version 3.0 (interim). Environmental Analysis Unit, Environmental Coordination and Permitting, Raleigh County, North Carolina. December 2017. <a href="https://connect.ncdot.gov/layouts/download.aspx?SourceUrl=%2Fresources%2F">https://connect.ncdot.gov/layouts/download.aspx?SourceUrl=%2Fresources%2F</a> Environmental%2FCompliance%2520Guides%2520and%2520Procedures%2FPr eparing%2520Natural%2520Resource%2520Technical%2520Reports%2Edocx
- North Carolina Natural Heritage Program. 2019. Natural Heritage Data Explorer (NHDE). <a href="https://ncnhde.natureserve.org/">https://ncnhde.natureserve.org/</a>


- North Carolina Stream Functional Assessment Team. 2015. NC Stream Assessment Method (NCSAM) User Manual. Version 2.1.
- North Carolina Wetland Functional Assessment Team. 2016. NC Wetland Assessment Method (NCWAM) User Manual. Version 5.0.
- Newcomb, L. 1977. Newcomb's Wildflower Guide. Boston: Little, Brown and Company. 490 pp.
- Radford, A.E., H.E. Ahles, and C.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. Chapel Hill: University of North Carolina Press. 1183 pp.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDEHNR. Raleigh, North Carolina. 325 pp.
- United States Department of Agriculture, Engineer Research and Development Center. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). Vicksburg, Mississippi. <a href="https://usace.contentdm.oclc.org/utils/getfile/collection/p266001coll1/id/7607">https://usace.contentdm.oclc.org/utils/getfile/collection/p266001coll1/id/7607</a>
- United States Department of Agriculture, Natural Resources Conservation Service. 1997. Hydrologic Units-North Carolina (metadata). Raleigh, North Carolina.
- United States Fish and Wildlife Service. 1992a. Small Whorled Pogonia (*Isotria medeoloides*) Recovery Plan, First Revision. Newton Corner, MA.
- United States Fish and Wildlife Service. 1992b. Virginia Spiraea (*Spiraea virginiana* Britton) Recovery Plan. Newton Corner, MA.
- United States Fish and Wildlife Service. 1997. Recovery Plan for Rock Gnome Lichen (*Gymnoderma lineare*) (Evans) Yoshimura and Sharp. Atlanta, GA.
- United States Fish and Wildlife Service. 2006. Optimal Survey Windows for North Carolina's Federally Threatened and Endangered Plant Species, http://www.fws.gov/nces/es/plant\_survey.html.
- United States Fish and Wildlife Service. 2010. National Wetlands Inventory website. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. <a href="http://www.fws.gov/wetlands/">http://www.fws.gov/wetlands/</a>
- United States Fish and Wildlife Service. 2011a. Appalachian elktoe (*Alasmidonta raveneliana*). Asheville Ecological Services Field Office. U.S. Department of the Interior, Fish and Wildlife Service, Asheville, NC. <a href="https://www.fws.gov/asheville/htmls/listed-species/Appalachian elktoe.html">https://www.fws.gov/asheville/htmls/listed-species/Appalachian elktoe.html</a>

- United States Fish and Wildlife Service. 2011b. Bog Turtle (*Glyptemys muhlenbergii*). Asheville Ecological Services Field Office. U.S. Department of the Interior, Fish and Wildlife Service, Asheville, NC. <a href="https://www.fws.gov/asheville/htmls/listed\_species/bog\_turtle.html">https://www.fws.gov/asheville/htmls/listed\_species/bog\_turtle.html</a>
- United States Fish and Wildlife Service. 2011c. Carolina Northern Flying Squirrel (*Glaucomys sabrinus*). Asheville Ecological Services Field Office. U.S. Department of the Interior, Fish and Wildlife Service, Asheville, NC. <a href="https://www.fws.gov/asheville/htmls/listed\_species/Carolina\_northern\_flying\_squirrel.html">https://www.fws.gov/asheville/htmls/listed\_species/Carolina\_northern\_flying\_squirrel.html</a>
- United States Fish and Wildlife Service. 2011d. Gray Bat (*Myotis grisescens*). Asheville Ecological Services Field Office. U.S. Department of the Interior, Fish and Wildlife Service, Asheville, NC. <a href="https://www.fws.gov/asheville/htmls/listed-species/gray-bat.html">https://www.fws.gov/asheville/htmls/listed-species/gray-bat.html</a>
- United States Fish and Wildlife Service. 2011e. Spotfin Chub (*Erimonax monachus*). Asheville Ecological Services Field Office. U.S. Department of the Interior, Fish and Wildlife Service, Asheville, NC. <a href="https://www.fws.gov/asheville/htmls/listed\_species/spotfin\_chub.html">https://www.fws.gov/asheville/htmls/listed\_species/spotfin\_chub.html</a>
- United States Fish and Wildlife Service. 2015. Bald & Golden Eagle Information. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. <a href="http://www.fws.gov/wetlands/">http://www.fws.gov/wetlands/</a>
- United States Fish and Wildlife Service. 2016. Northern Long-Eared Bat What it Means for Your Project, Asheville Field Office, Fish and Wildlife Service. Asheville, NC. June 7, 2016. <a href="https://www.fws.gov/birds/management/managed-species/bald-and-golden-eagle-information.php">https://www.fws.gov/birds/management/managed-species/bald-and-golden-eagle-information.php</a>
- United States Fish and Wildlife Service. 2019. Rusty Patched Bumble Bee (*Bombus affinis*), Midwest Region, U.S. Fish and Wildlife Service. Bloomington, MN. July 11, 2019. <a href="https://www.fws.gov/midwest/endangered/insects/rpbb/index.html">https://www.fws.gov/midwest/endangered/insects/rpbb/index.html</a>
- United States Fish and Wildlife Service, Region 4: Southeast Region, North Carolina Ecological Services. 2018. Threatened and Endangered Species in North Carolina: Graham County. Updated June 27, 2018. https://www.fws.gov/raleigh/species/cntylist/graham.html
- United States Geological Survey. 2016. Hewitt, Robbinsville, Tuskeegee, North Carolina, Topographic Quadrangles (7.5-minute series).


Appendix A

**Figures** 









1-65,000 (At original document are of 13x17)

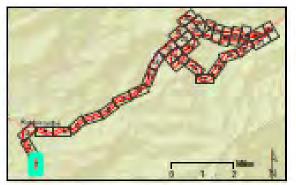
Distributor Spiner NAD 1933 Resignate Study Combos (UN D38) Page 2 (ACS Impropriate Counterples 1 (ACS) Freds Presid Statisticals. Addingues.



- Reject Study Area



Project Location Bridge Bullianish Contact Costop NC


17001726 Neparating JCA on 2016 IE 09 builtimed for tree by 1990 on 2016 II 1 integration Sever by U.S. on 2016 II 1

Olent/Paject NCDOT - Diverson 14 Corridor K Project

STIP: A-0009C

Project Study Area Map





NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14

1.2.400 (At original document are of Tig11)

Constitutio System: NAC SMC Securities Senio Constituti NS 1000 Face.
 Juntificiation Delimentum completion by Newton on June 2.3, 50.75, and July 1.15.

Potential Jurisdictional Intermittent Stream 🔁 Project Study Area

No Potential Jurisdictional Perennial Stream

N Potential Jurisdictional Scop

✓ Salect Pipes/Bridges/Culverts

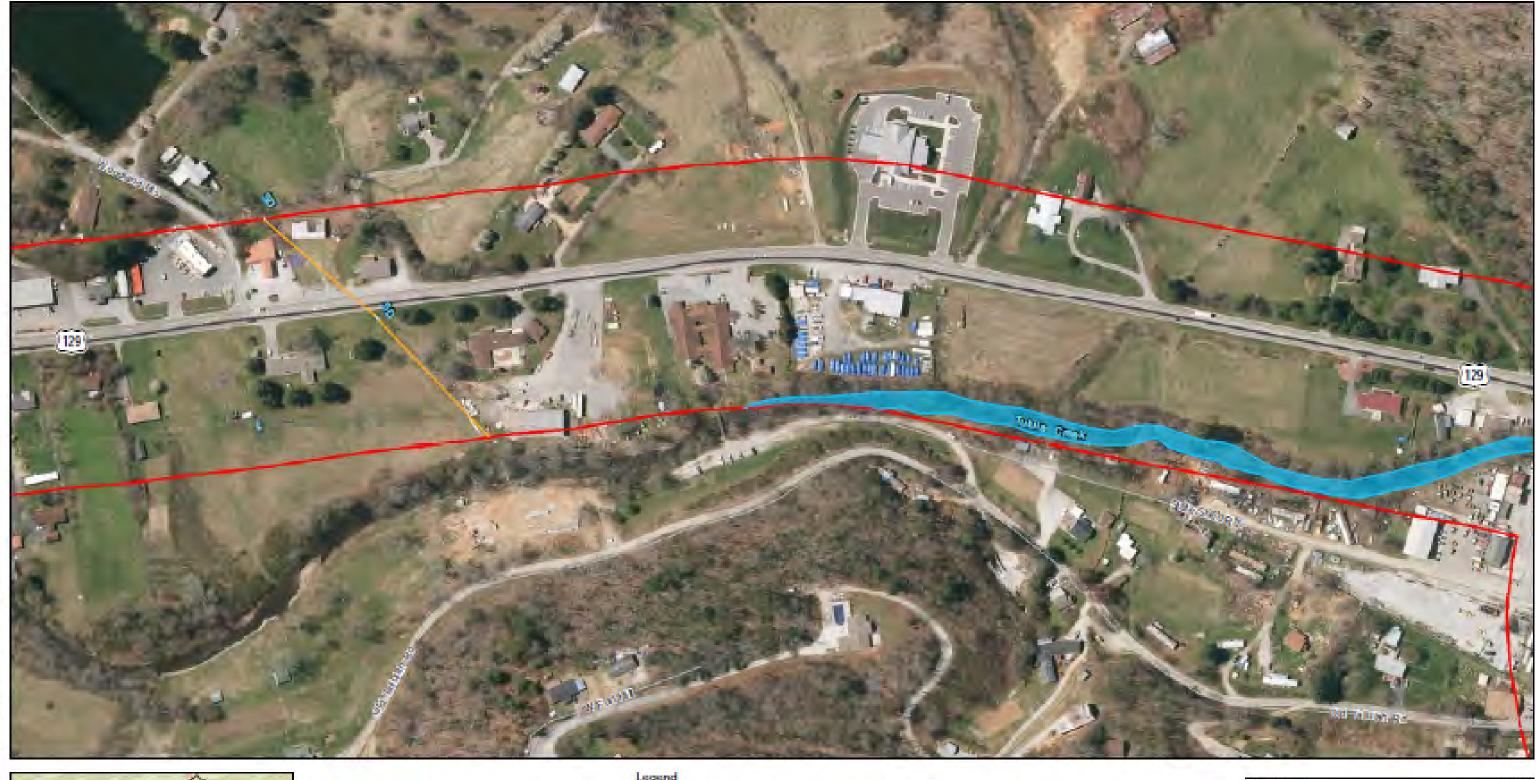
Potential Jurisdictional Wetland

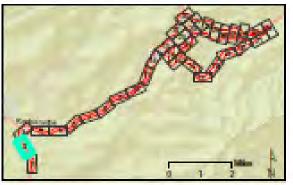
Potential Jurisdictional Pond

Wetland Data Point

Upland Data Point

Sink Points


Project Location


Proposed by FMAIC - 2016 Bit 16 featured is near by MRIS - 2016 Bit 16 featured in near by MRIS - 2016 Bit 20 featured in near by SIR - 2016 Bit 20

Olert/Project NCDOT - Division 14 Conidor K Project STIP: A-0009C


Potential Jursidictional Features Map

t offices, ampliques, completes and agents. Into any and all these along in my may have the contact or provider of the date.





NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14



Constitute System: RAD 1992 Serial Serial Serial Condition STS 1992 Feat
 Association of Delination completed by Serial conduct 2.1, 10.75, and July 5.15.

Potential Jurisdictional Intermittent Stream 😝 Project Study Area

Potential Jurisdictional Perennial Stream

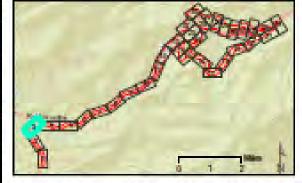
Potential Jurisdictional Scop

Select Pipea/Bridges/Culverts Potential Jurisdictional Pond

Potential Jurisdictional Wetland

Wetland Data Point

Upland Data Point


Sink Points

Project Location Baltimedia/Serret Section County NC

171001126 Proposed by FMARC or 2711.05 M Sectioned Service by MRC or 2711.05 M Independent Service by SRC or 2711.05 Z

NCDOI - Division 14 Conidor K Project STIP: A-0009C







NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14



12.600 At original document ten-of Thr17):

Potential Jurisdictional Perennial Stream

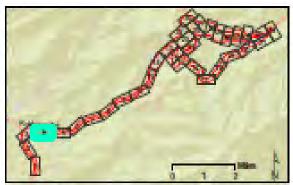
N Potential Ariedictional Scop

✓ Select Pipea/Bedgea/Culverts

Potential Arisdictional Pond Potential Jurisdictional Wetland

Wetland Data Point


Upland Data Point


Sink Points



Proposed by FAMIC on 2018 III believed between by 990 on 2018 III believed by 490 on 2018 III believed by 490 on 2018 III

Cleen/Project
NCDOI - Division 14
Comidor K Project
SIIP: A-0009C
signs No.
3-3





# NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14



1.2.600 (As original document size of 11x17).

Constitute System: NAC 1900 Securitoria Sinds Combre 677 1000 Faux.
 Japanissischer Daleuminen completent by Newton on June 2. J. 10.37. and July 1.17.

Potential Jurisdictional Intermittent Stream 🔀 Project Study Area



Potential Jurisdictional Wetland

N Potential Articlictional Scop

✓ Select Pipes/Bridges/Culverts

Potential Jurisdictional Fond

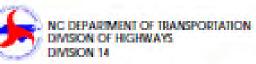
Wetland Data Point

Upland Data Point:

Sink Points



Relations Review, NO.


171001725

Fragment by FANC = 2018 26 to before all towards (9 MHz = 2018 26 to be before the country CM or 2018 26 26

Cleat/Payed NCDOT - Division 14 Corridor X Project SRP: A-0009C







1.2.400 (As original document size of 11s17).

Constitution Systems NAD 1988 Natural Area State Constitute STS 1988 Fund.
 Justificial and Deliversian completed by Natural on June 2.1, 1975, and July 1.15.

### Logend

Potential Jurisdictional Intermittent Stream 💋 Project Study Area

Potential Jurisdictional Perennial Stream

// Potential Jurisdictional Soup

Select Pipes/Bridges/Culverts Potential Jurisdictional Fond

Potential Jurisdictional Wetland

Wetland Data Point

Upland Data Point

Sink Points



Project Locarios Buttereds/Surreit Getern County NC

171001326 Payment by FAMIC on 201808-18 between boson by MMI or 2018 III In Independent Research by E.W. or 2018 III III

Clort/Project NCDOT - Division 14 Corridor K Project STIP: A-0009C





NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS



in Spinore SAS 1993 Securitors Sinch Common SS 1993 Special and Delenation completed by Section on June 2.5, 50 25, and July 5.15.

Potential Jurisdictional Perennial Stream

/ Potential Jurisdictional Scop

✓ Select Pipes/Bridges/Culverts Potential Jurisdictional Pond

Potential Jurisdictional Wetland

Wetland Data Point

Upland Data Point

Sink Points

Proposed by FMACC = 2016 00.10 Sections of Business by MACC = 2016 00.10 Sections of Business by MACC = 2016 00.20

Clorid Project
NCDOT - Division 14
Corridor K Project
STIP: A-0009C

Rgure No. 3-6





NC DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14

12.600 (At original document see of TEPU)

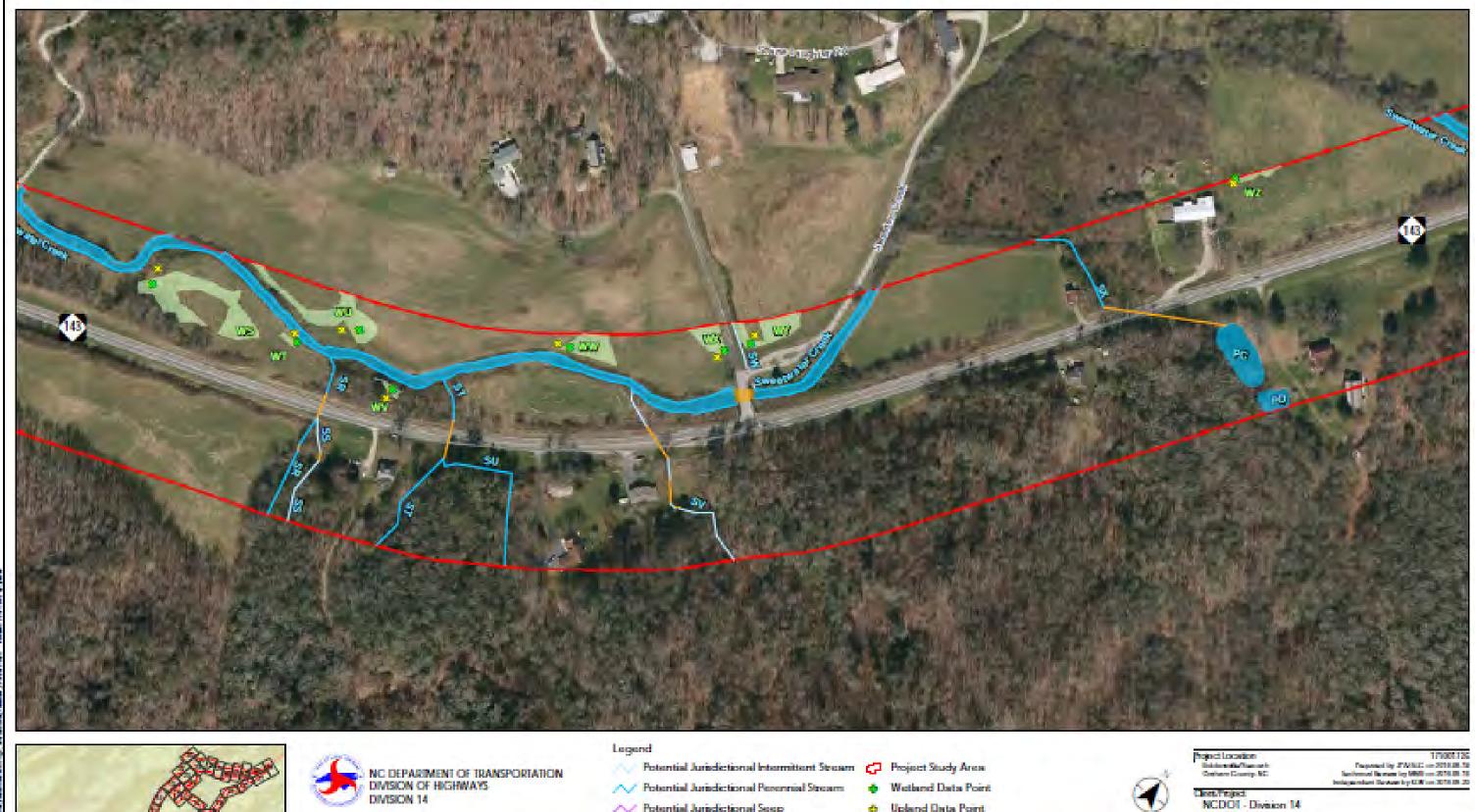
- nia Nysiano, NAO 1900 Nesia Parisa Sinchi Carolina (171 1700 Pauli and Calescation completion) by Na stan on June 2 J. N. P., and July 1 M.

N Potential Jurisdictional Perennial Stream

N Potential Jurisdictional Scop

Select Pipes/Bridges/Culverts

Potential Jurisdictional Pond Potential Juridictional Wetland Wetland Data Point


Upland Data Point

Sink Points



Surface of the same by 6000 on 2010 20 10 to purchase for ware by 600 on 2010 20 20

NCDOI - Division 14 Corridor K Project STIP: A-0009C





1.2.600 (At original document are of Tig17)

on: MAD 1900 Seria/Term State Combus 979 1700 Families, and July 175.

N Potential Jurisdictional Scop

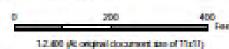
✓ Select Pip-a/Bridges/Culverts

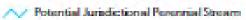
Potential Jurisdictional Pond Potential Juridictional Wetland Upland Data Point

Smk Points

Corridor K Project STIP: A-0009C

Potential Jursidictional Features Map


Page 8 of 34








NG DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS





// Potential Jurisdictional Scop

// Select Pipes/Bridges/Culverts

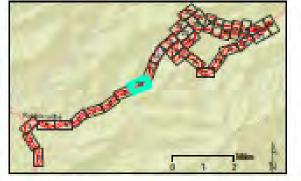
Potential Jurisdictional Pond

Potential Jurisdictional Wetland

Wetland Data Point

Upland Data Point

Sink Points


Dient/Project NCDOI - Division 14 Corridor K Project

STIP: A-0009C

Potential Jursidictional Features Map

Page 9 of 34





DIVISION 14



Committee Springer, MAD 1982 New York, Name Spring 1971 1982 From 2 Autobrishmed Delegation completed by Name on Jone 2 J. 1917. and July 171.

→ Potential Jurisdictional Scop

Select Pipes/Bridges/Culverts Potential Jurisdictional Pond

Potential Jurisdictional Wetland

Upland Data Point

Sink Points.

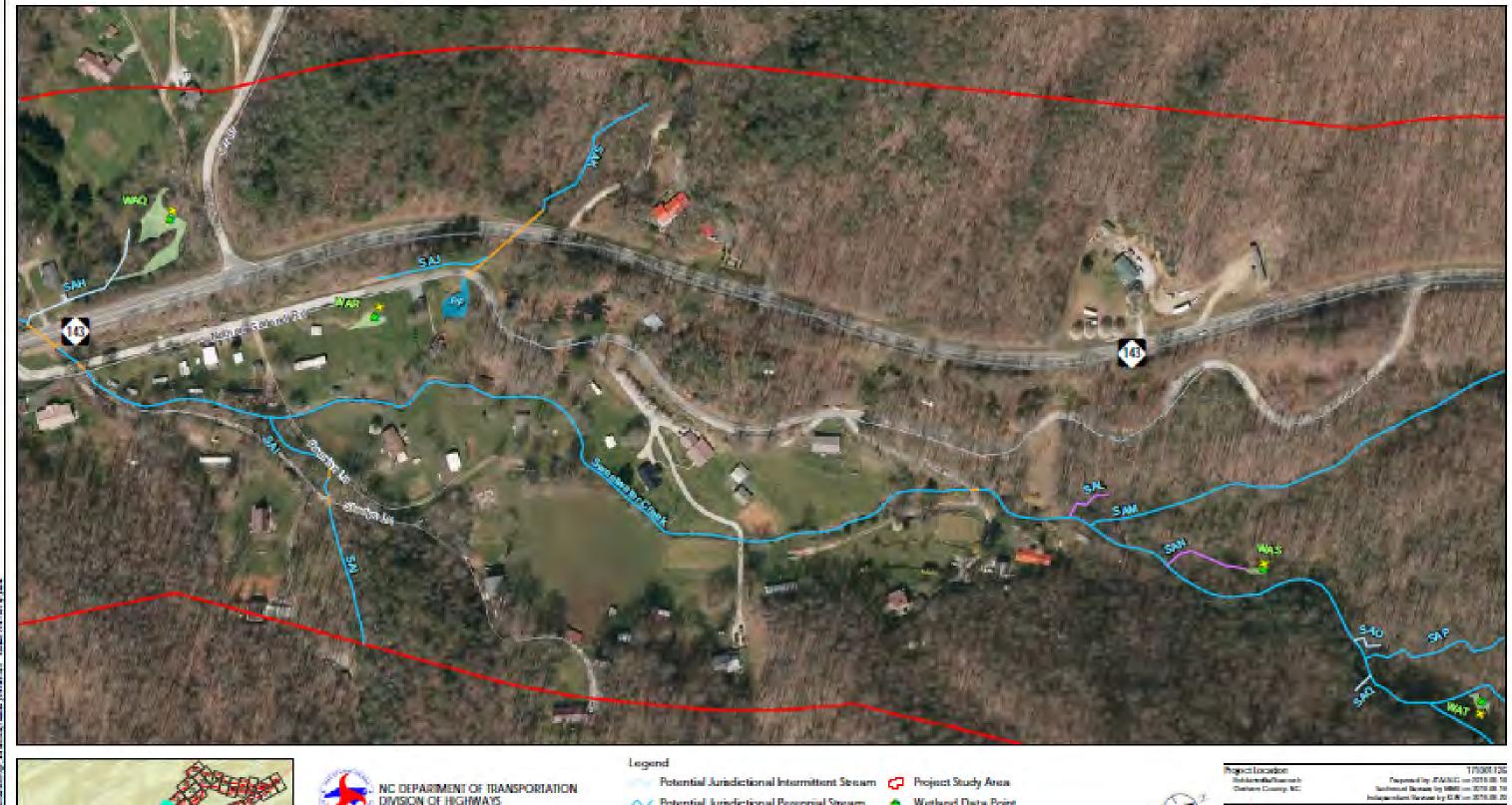
Ont-Project NCDOT - Division 14 Corridor K Project 5TIP: A-0009C

3-10








12.600 (it original document top of 11x17)

// Sukect Pipea/Bridges/Culverts

Potential Jurisdictional Pond Potential Juridictional Wetland Sink Points

Gest-Project NCDOI - Division 14 Corridor X Project SIIP: A-0009C

3-11







NC DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14



12.600 (At original document are of 11x17)

Appears NAO 1988 NaturBorn, New Constant FF LOSS Facts of Distriction completed by Newton on Jone 2.1, 50.71, and July J. 11.

Notential Jurisdictional Perennial Stream

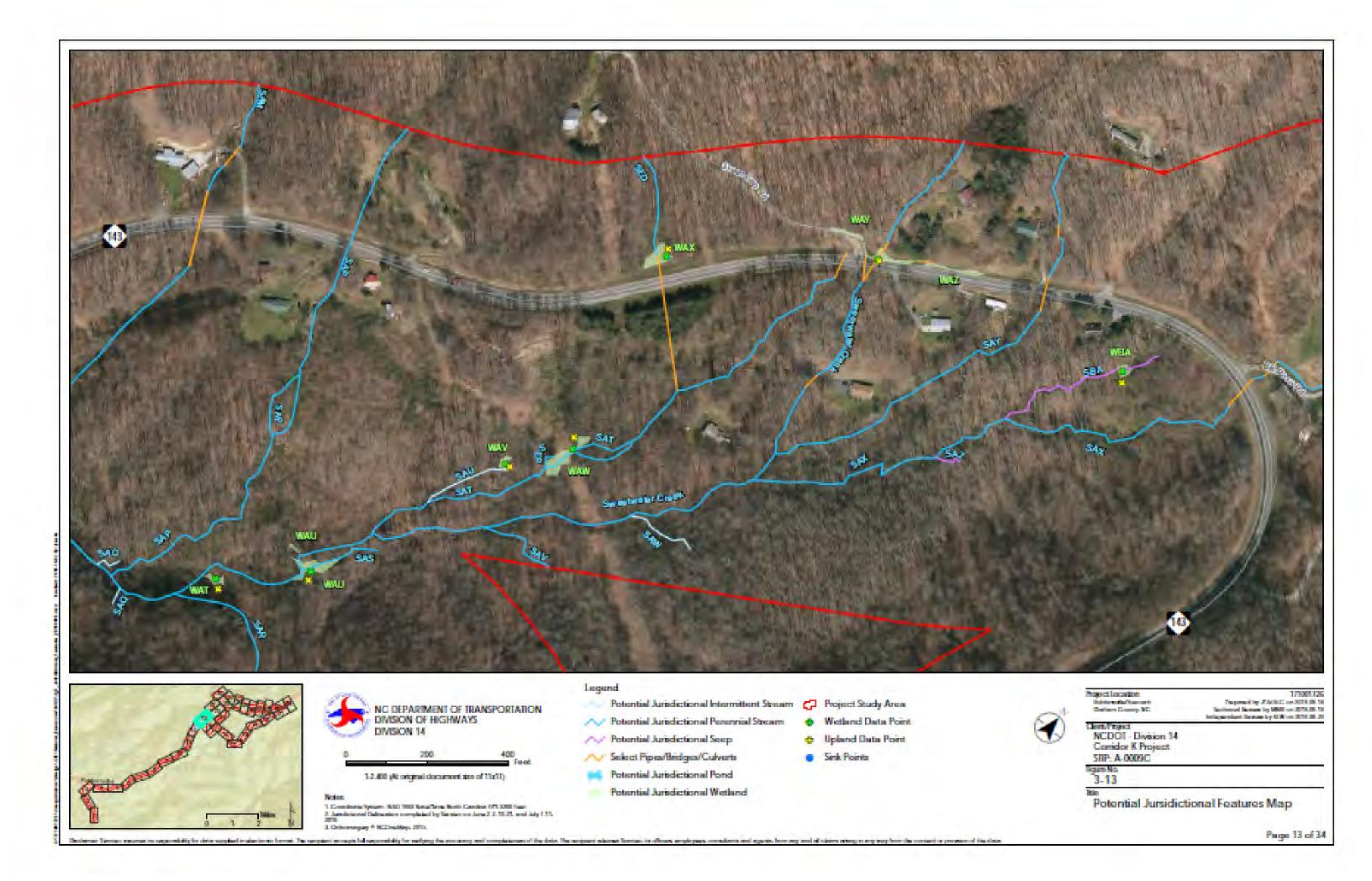
// Potential Jurisdictional Scop

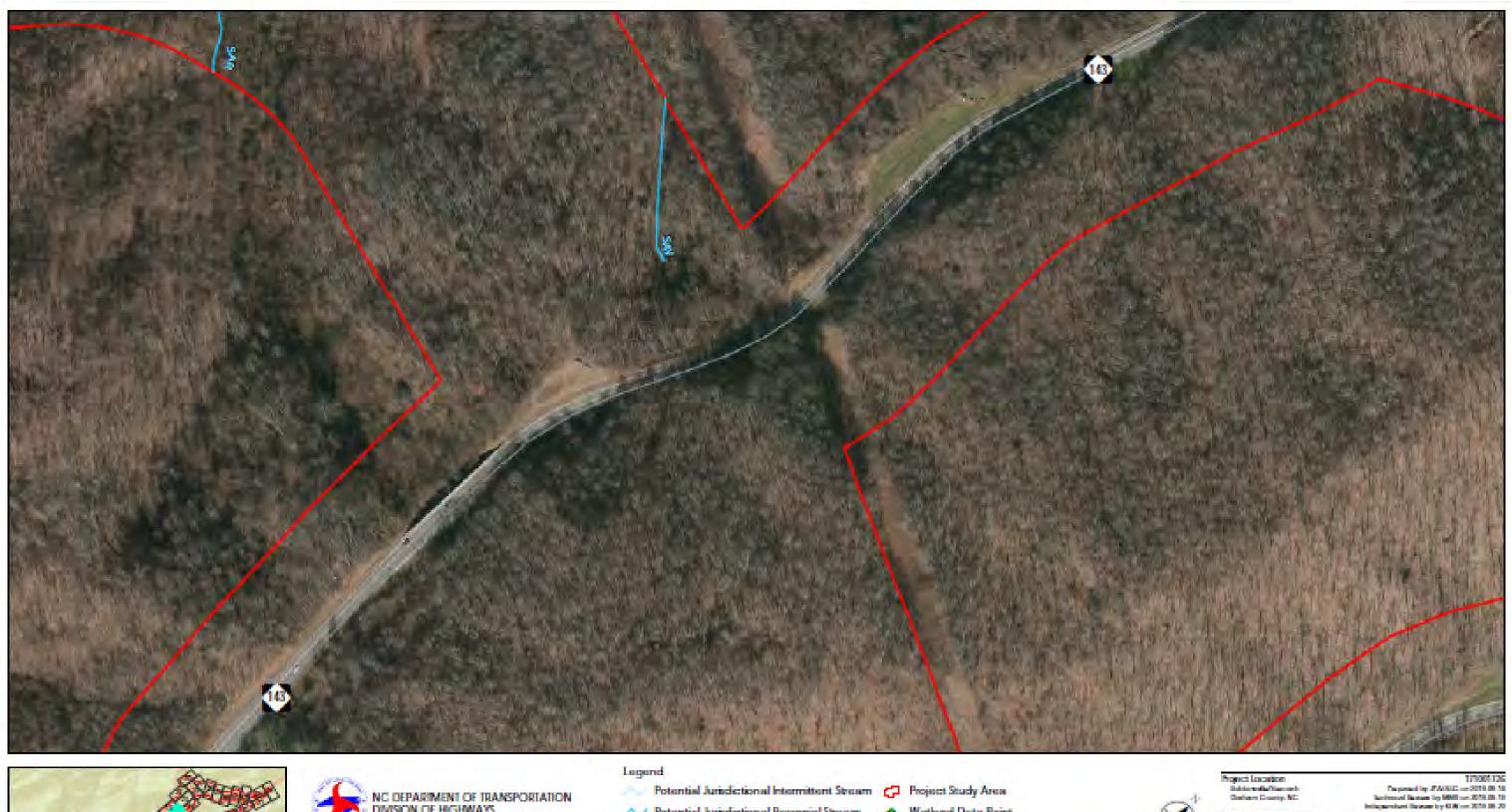
✓ Select Pipes/Bridges/Culverts Potential Juridictional Pond

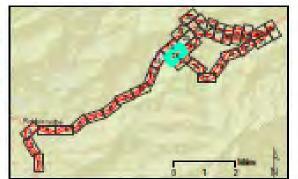
Potential Jurisdictional Wetland

Wetland Data Point

Upland Data Point


Sink Points


Cleat/Project NCDOT - Division 14 Corridor K Project SIIP: A-0009C


3-12

Potential Jursidictional Features Map

Page 12 of 34







DIVISION OF HIGHWAYS DIVISION 14

12.800 (At original document stee of Tix17)

Considerin System RAD 1900 Seturibus North Consider NV 8000 Face
 Aprolishmed Balancians completed by Settler on June 2 J. 10.25, and July 5 M. 2000.

Potential Jurisdictional Perennial Stream

Potential Jurisdictional Scop

Select Pipes/Bridges/Culverts Potential Jurisdictional Pond

Potential Jurisdictional Wetland

Wetland Data Point

Upland Data Point

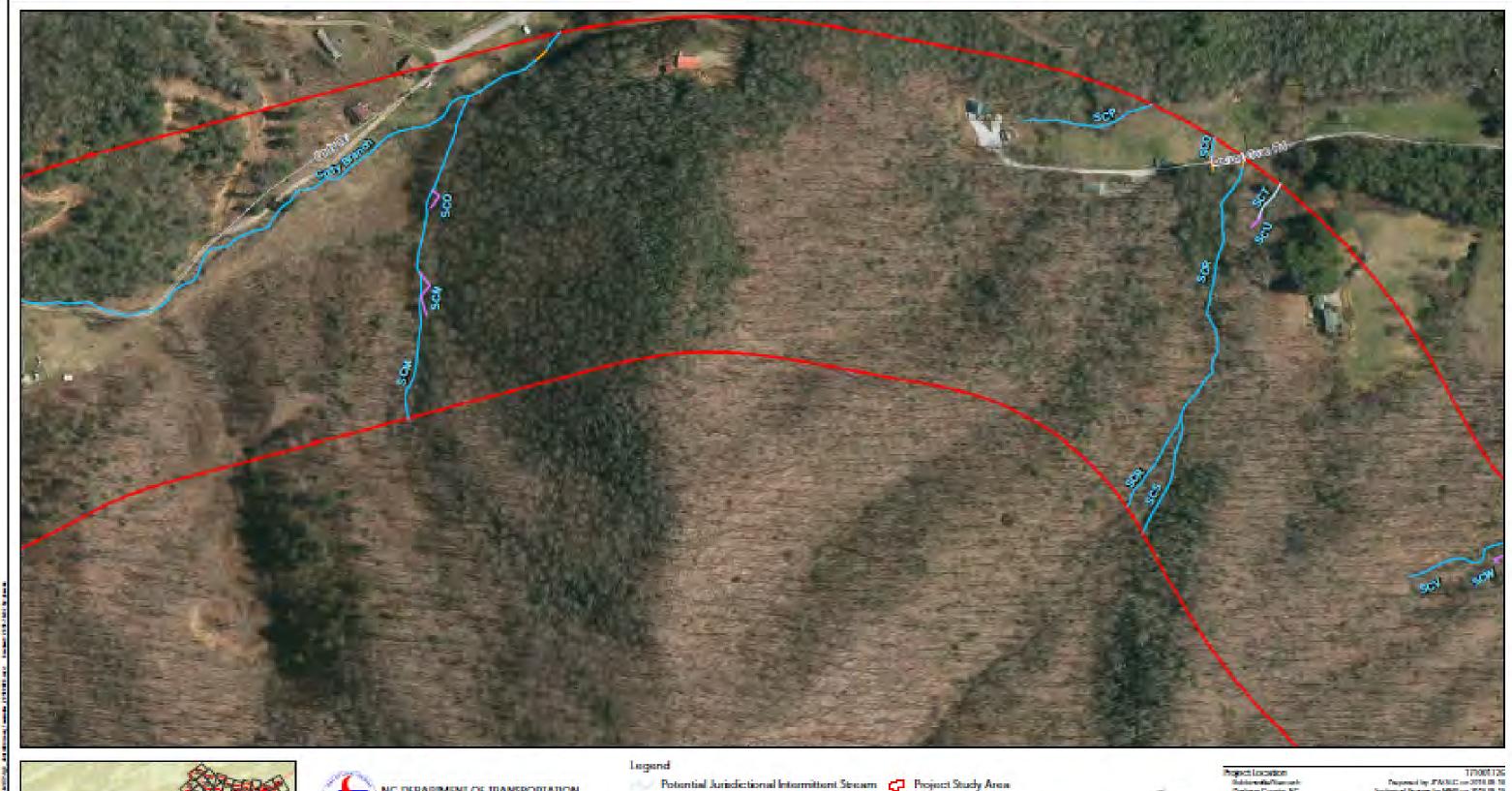
Sink Points



Onet/Project NCDOT - Division 14 Comidor K Project 5TIP: A-0009C

3-14

Potential Jursidictional Features Map


daily lie and you are any and complete and the date. The sequent schools because in the sequent and sequent and appears considered and appears become any and all claims artury in any angle of the contract of the claims.



Desire Service resources on supportably the delete supplied to allow terms beread. The surplant arrange to the property the content of the delete. The surplant schools believe to the supplied to allow the surplant arrange and surplant to the content of the delete.

Constitutio Springer, MAD 1980 Security South Condition NVI SIZE Func.
 Justification of Delination corresponded by Narrian on June 2.1, 2017. and July 171.

Page 15 of 34







NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS

12.60 (At original document are of 11x11)

Constitutio Springer, MAC 1983 Security State State Condition 107, 2083 Func.
 Autodistinated Delinations corresponded by Newton on Jures 2 3, 70,27, and July 3 75.

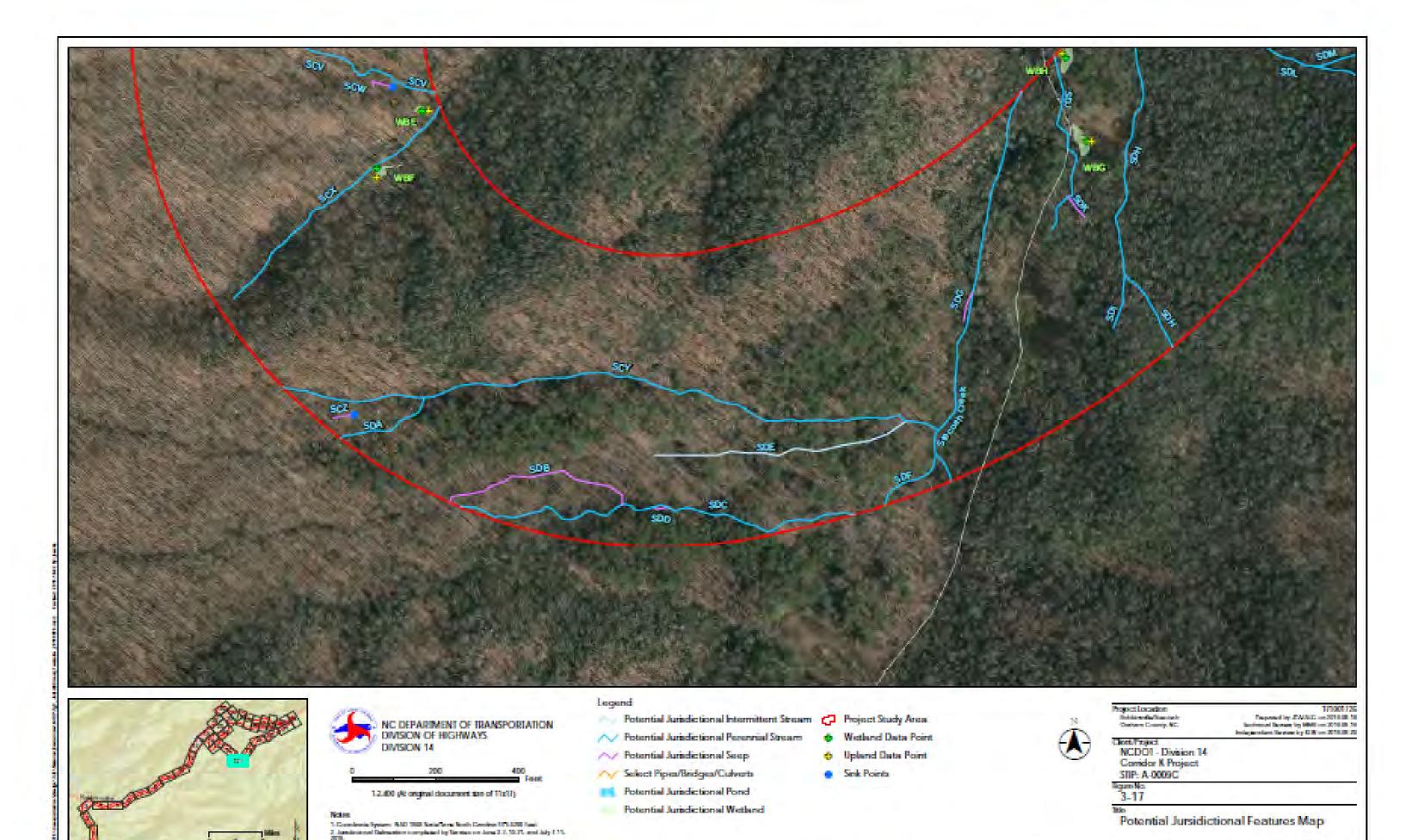
Notential Jurisdictional Perennial Stream

Potential Jurisdictional Scop

Select Pipes/Bridges/Culverts

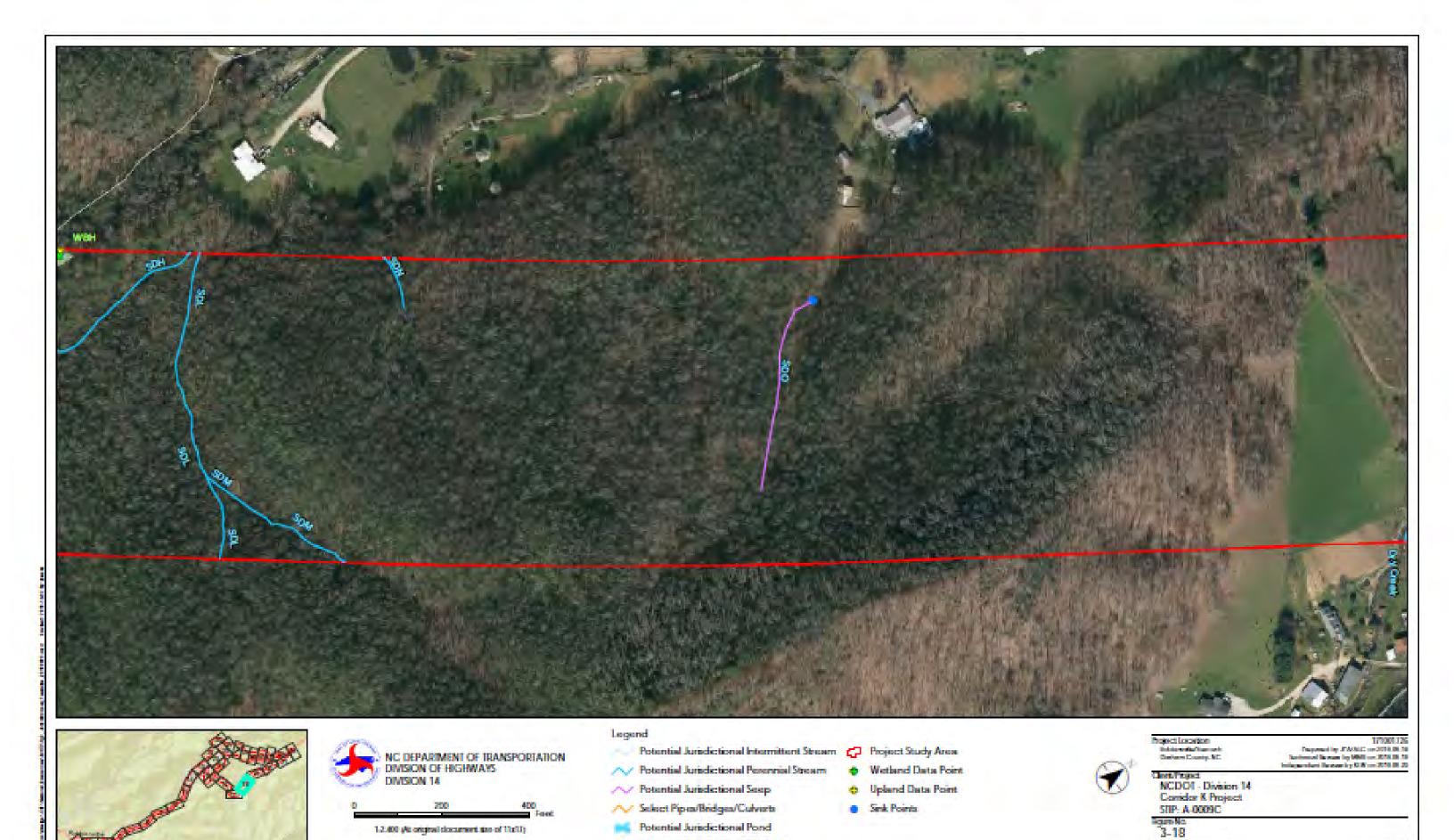
 Potential Jurisdictional Pond Potential Jurisdictional Wetland Wetland Data Point

Upland Data Point


Sink Points



Proposed by PANEC on 2016 Birth between the same by MRI on 2016 Birth between the same by MRI on 2016 Birth


NCDOT - Division 14 Corridor K Project STIP: A-0009C

3-16



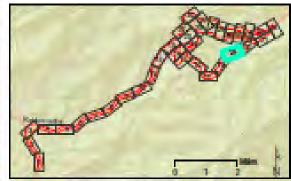
Page 17 of 34

Commission Spaces: SAD 1992 Seria/Seria Serial Commission 1974-1998 Family.
 Josephson and Dalmartine completed by Services on June 2.1, 10.75, and July 5.75, 2009.



Potential Jurisdictional Wetland

1 Deleterage of McDealdey, 1715


terms became an expectably by data applied to also increase break. The compact arranges by account of previous of the data. The suppose above break and agreed him are good of claims arrange and previous of the data.

Considerate Systems ISAD WEST SentalTerm Stock Condition ISTS STEEL France
 Agreedintermed Delinaristics corresponded by Version on Aurus 2 J. 1912. pp. ed. by J. 11.

Potential Jursidictional Features Map

Page 18 of 34





NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14

1.2.600 (At prograd document top of Thriff)

to System. NAD 1988 National Serie State Combine 1971 208 (and and Delination completed by Series on Jone 2.1, 20.71, and July 1.21,

Notential Jurisdictional Perennial Stream

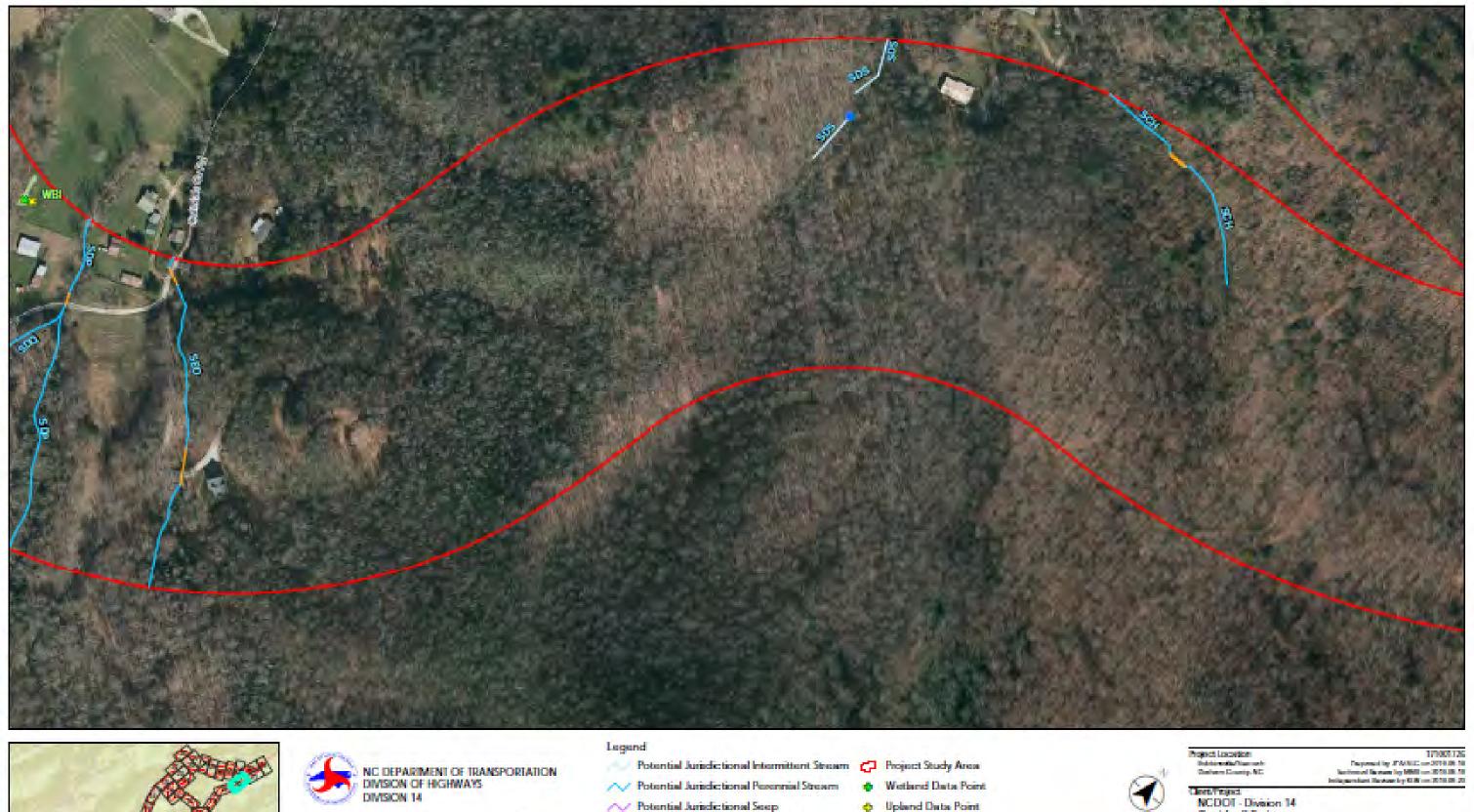
Potential Jurisdictional Scop

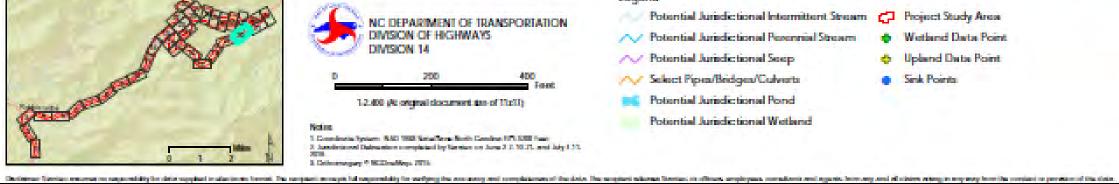
✓ Select Pipes/Bedges/Culverts

Potential Jurisdictional Pond Potential Juridictional Wetland

Wetland Data Point

Upland Data Point


Sink Points




171001726
Proposed by FWSIC on 2016 05 Ni
berlowed between by MMI on 2018 05 Ni
berlowed between by MMI on 2018 05 Ni
berlogmentant Review by CW on 2018 05 Ni

Clort/Proxit NCDOI - Division 14 Corridor K Project STIP: A-0009C

3-19





12.600 (At original document are of Hall)

Constitutio Spitzers SAD 1988 Schaffers: Sorth Continue NV. 2088 Fact
 Association of Debracking completed by Sentian on June 2.1, No.21, and July 5.11, 2018.

✓ Select Pipes/Bridges/Culverts

Potential Jurisdictional Pond Potential Jurisdictional Wetland Upland Data Point

Sink Points



NCDOT - Division 14 Corridor K Project

STIP: A-0009C 3-20

Potential Jursidictional Features Map

Page 20 of 34







NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14



1. Consideria System 1850 1903 Setullana Sorti Contino 107. 1000 Feat

1.2.400 (At original document are of 11x17)

Notional Aurisolicational Personnial Stream

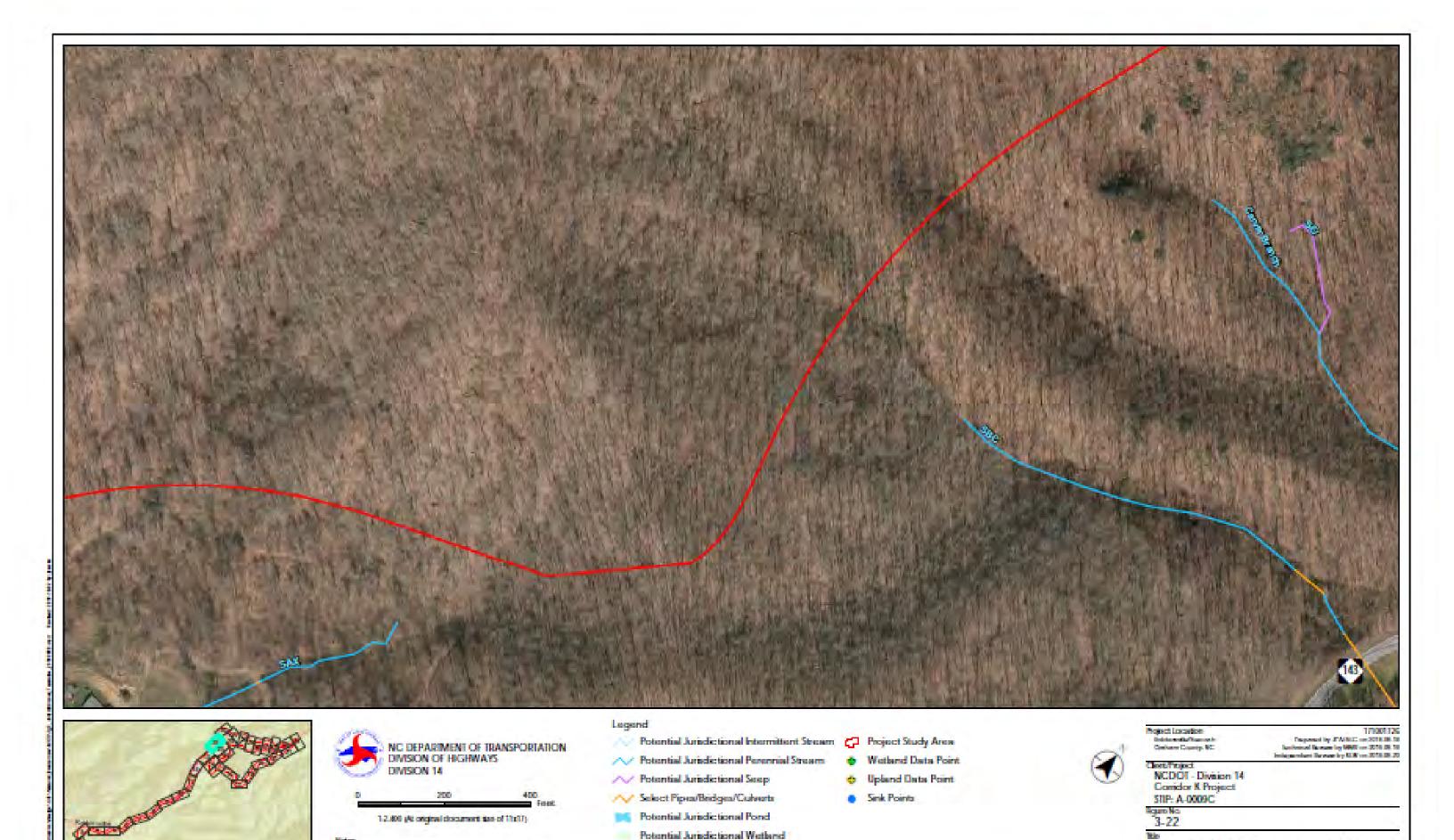
→ Potential Jurisdictional Scop ✓ Select Pipes/Bridges/Culverts

Potential Jurisdictional Pond

Potential Jurisdictional Wetland

Wetland Data Point.

Upland Data Point

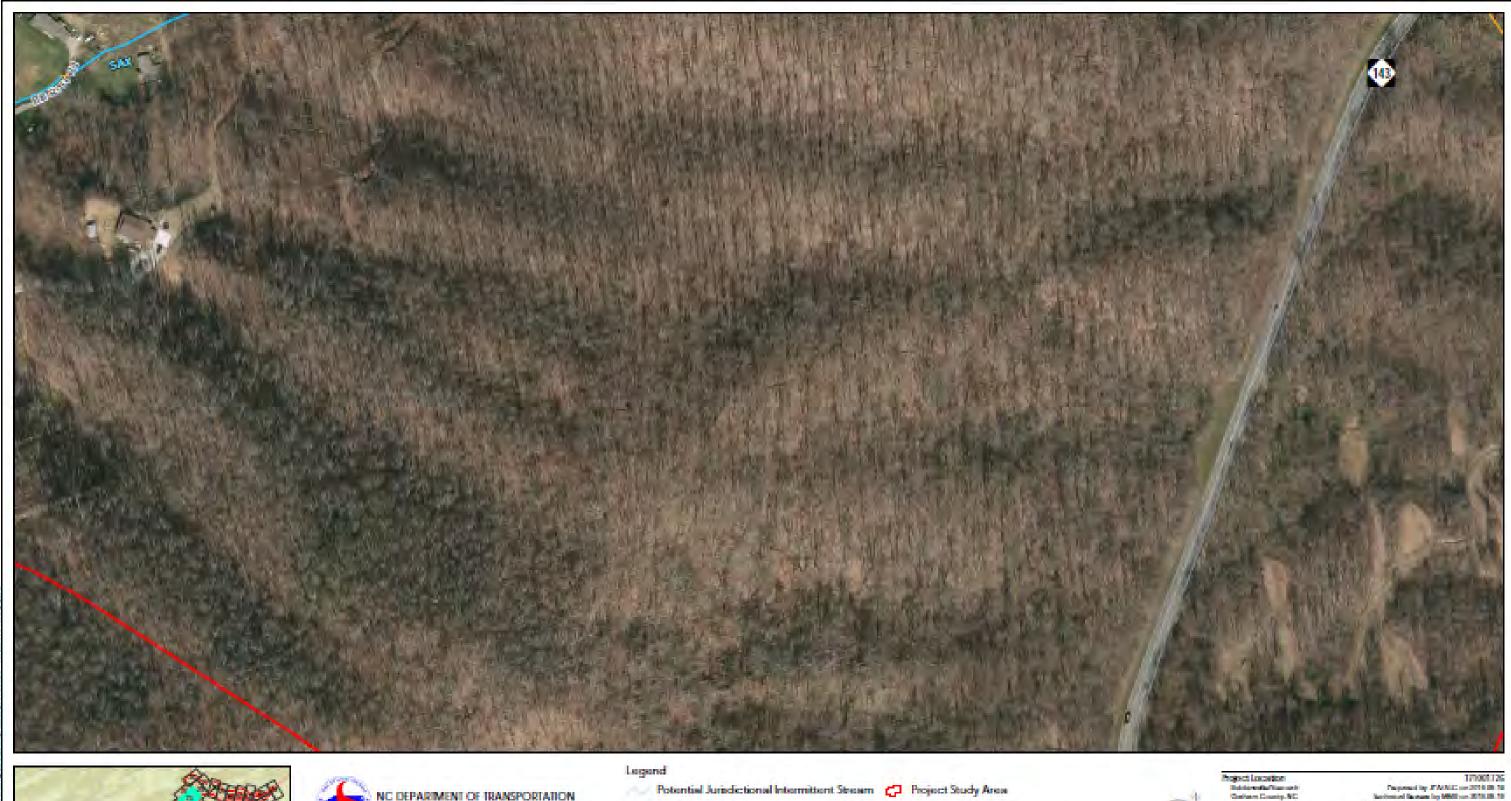

Sink Points

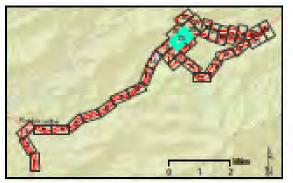
Believe Bulliame b Contacts County, NC

Proposed by FARIC on 2016 IN No. Section 10 Section 10

Onet/Paped NCDOT - Division 14 Comdor K Project STIP: A-0009C

3-21





Potential Jursidictional Features Map

Page 22 of 34

where Notes around its paper that the supplied in the supplied

 Connectioning Systems NAC 1980 Resid Force, North Construct RFS DRB Foats
 Association of District States on Survey 2 E. M. Ph. anni July 5 No. 2019.





NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14

12.60 (At original document are of Tig17)

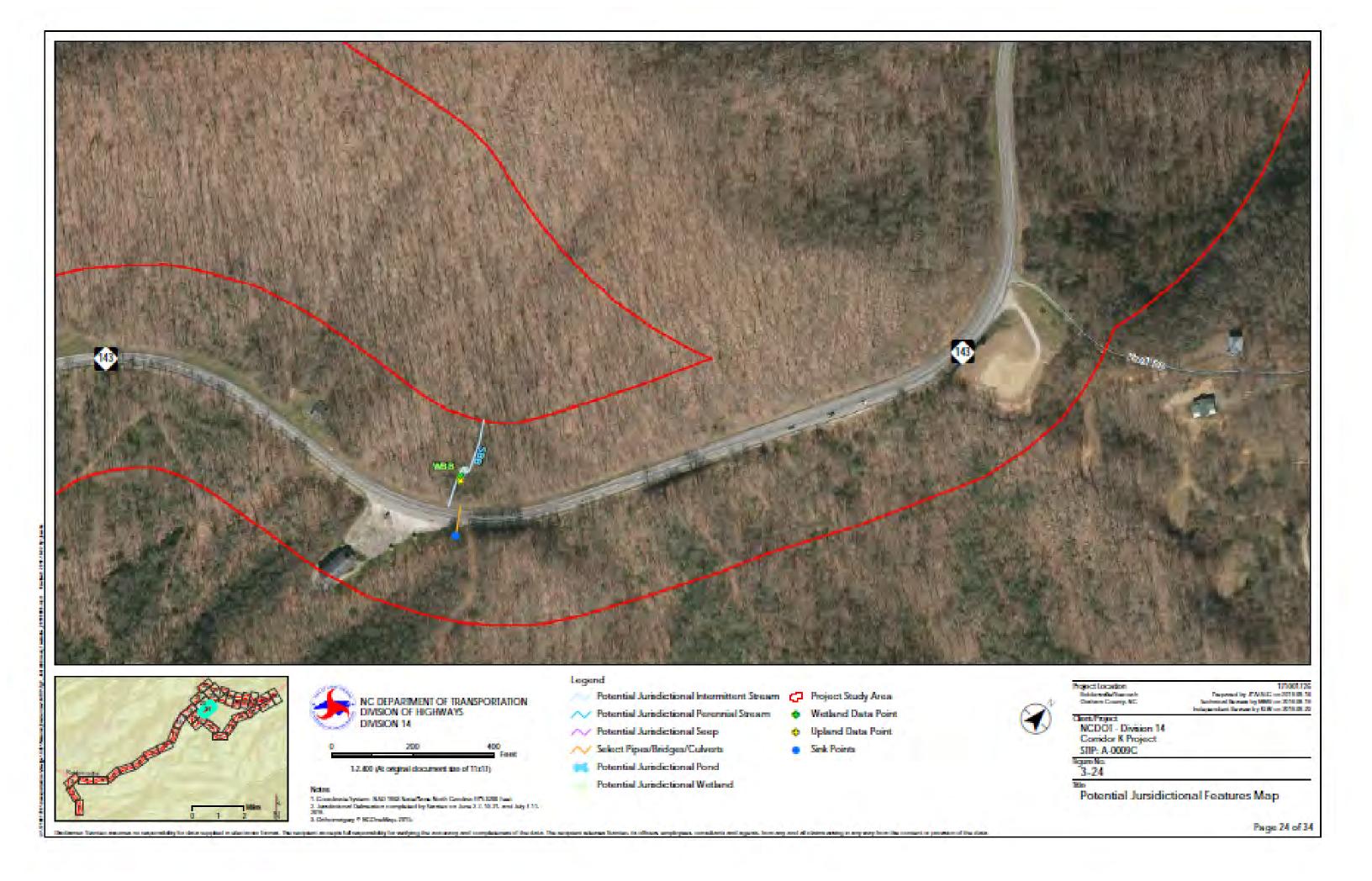
Constitutio System, SAD 1992 Setudions Sorts Continue 975 1993 Seed.
 Jurisdictioned Dales electromy including the state on Juris 2-2, 50.35, and July 1.51.

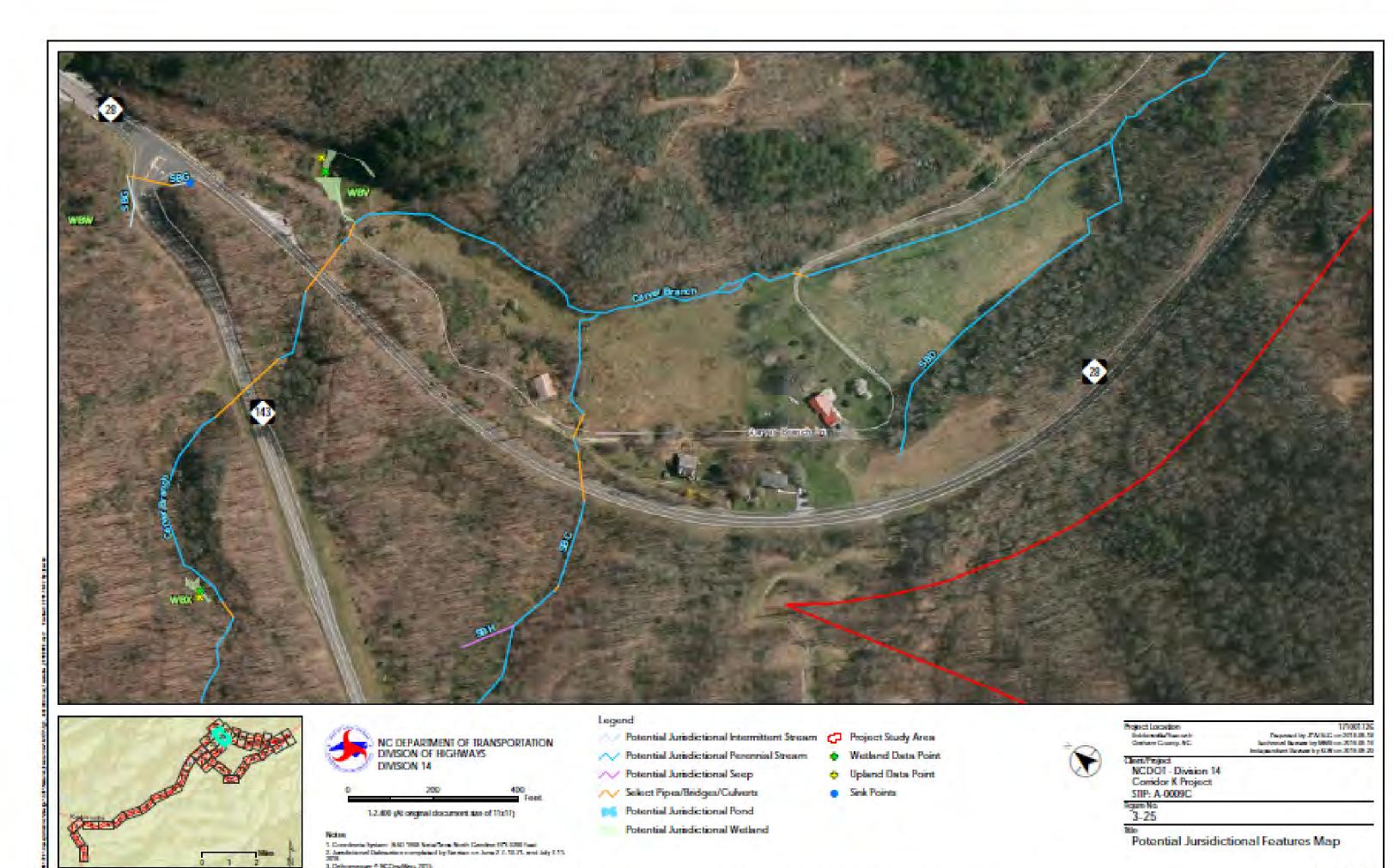
Potential Jurisdictional Perennial Stream Wetland Data Point

→ Potential Jurisdictional Scorp

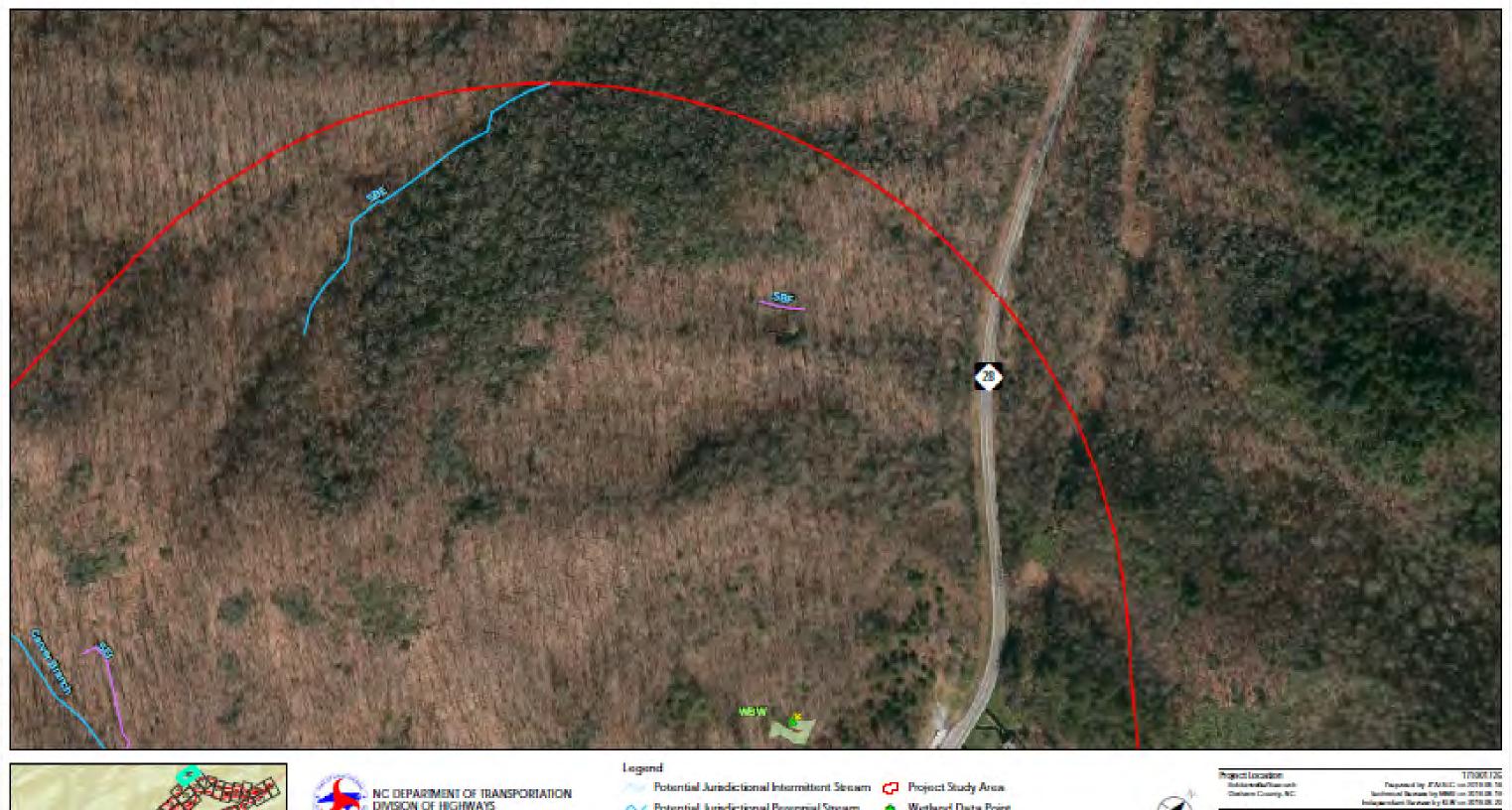
Select Pipes/Bridges/Culverts Potential Jurisdictional Pond

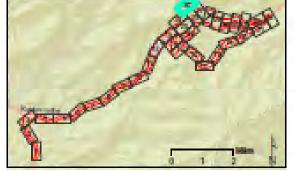
Potential Jurisdictional Wetland


Upland Data Point


Sink Points

Proposed by FWAIC on 2016 B 16 betterned factor by MHI on 2016 B 16 betry and on the CV S II on 2016 B 20


Olent/Project NCDOT - Division 14 Consider K Project STIP: A-0009C


3-23





we became the compacting to this supplied to the supplied to the internal Paragraph and supplied to the compact of the supplied to the supplie







NC DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14



mediantia Spriner RAD 1903 Seria/Seria Serial Combine HTS 1908 Funi extinsional Dalmantian completant by Serian on Jone 2.1, 30.25, and July 175. 3. Districtionary & MCDinables, 2015.

N Potential Jurisdictional Perennial Stream

/ Potential Jurisdictional Scop

/// Select Pipes/Bridges/Culverts Potential Jurisdictional Pond

Potential Arisdictional Wetland

Wetland Data Point.

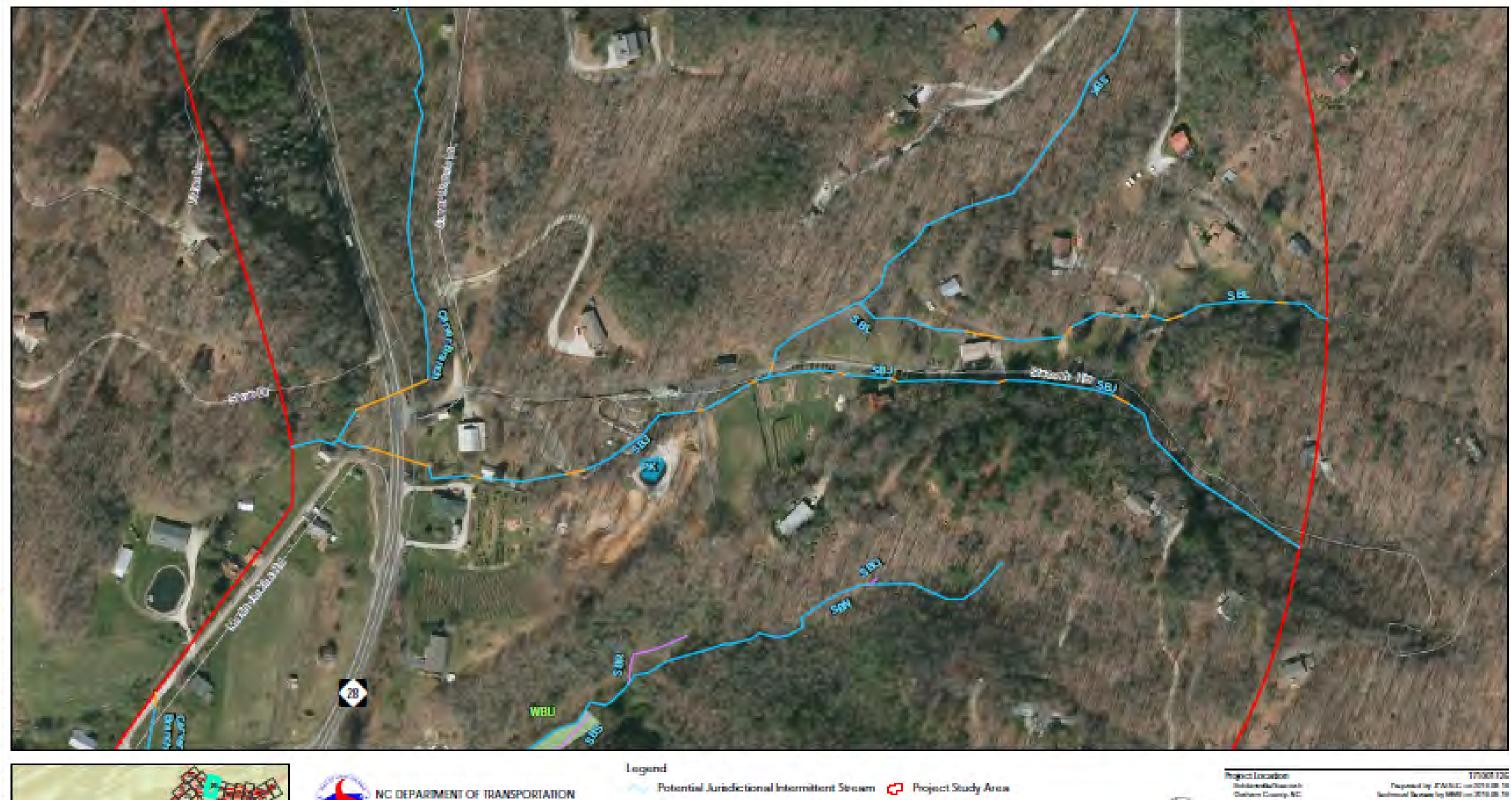
Upland Data Point

Smk Points

NCDOT - Division 14 Comidor K Project STIP: A-0009C

3-26

Potential Jursidictional Features Map


Page 26 of 34



Page 27 of 34

Deliver Vertex receives a copyright to the applied in placement forces. The copyright in the copyright in part of the copyright is presented in the copyright i

3. Deliveraguey \* MCClouddens, 2013.







NC DEPAREMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14



12.60 (At original document top of 11x17)

ris System. NAD 1900 Sectorion State Combine STA 2000 Section and Delegation completed by Section on June 2.1, 50.21, and July 3.15.

Potential Jurisdictional Intermittent Stream



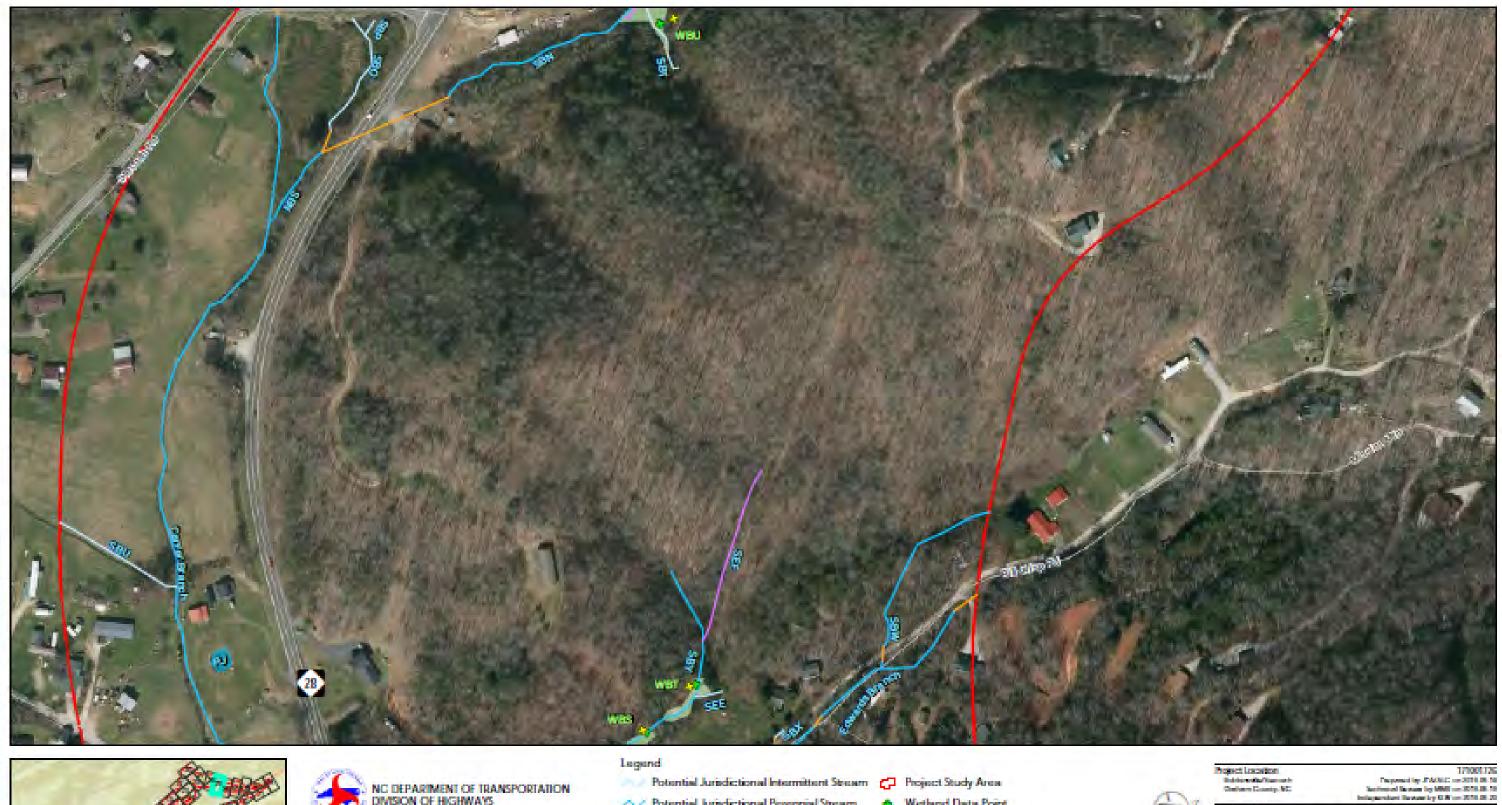
Potential Ariedictional Scop

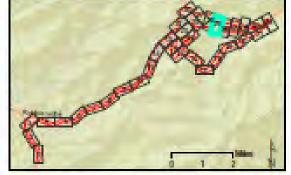
✓ Select Pipea/Bridgea/Culverts Potential Jurisdictional Pond

Potential Jurisdictional Watland

Project Study Area

Wittland Data Point


Upland Data Point


Sink Points



Ocet/Project NCDOI - Division 14 Corridor K Project SIIP: A-0009C

3-28







DIVISION OF HIGHWAYS DIVISION 14



Commission Systems (EAC) 1982 Serial Force Stories Commission 675 1988 Four
 Justicilistic and Dalmantium completion by Vinction on June 2 2, 1917. and July 1.71.

Potential Jurisdictional Perennial Stream

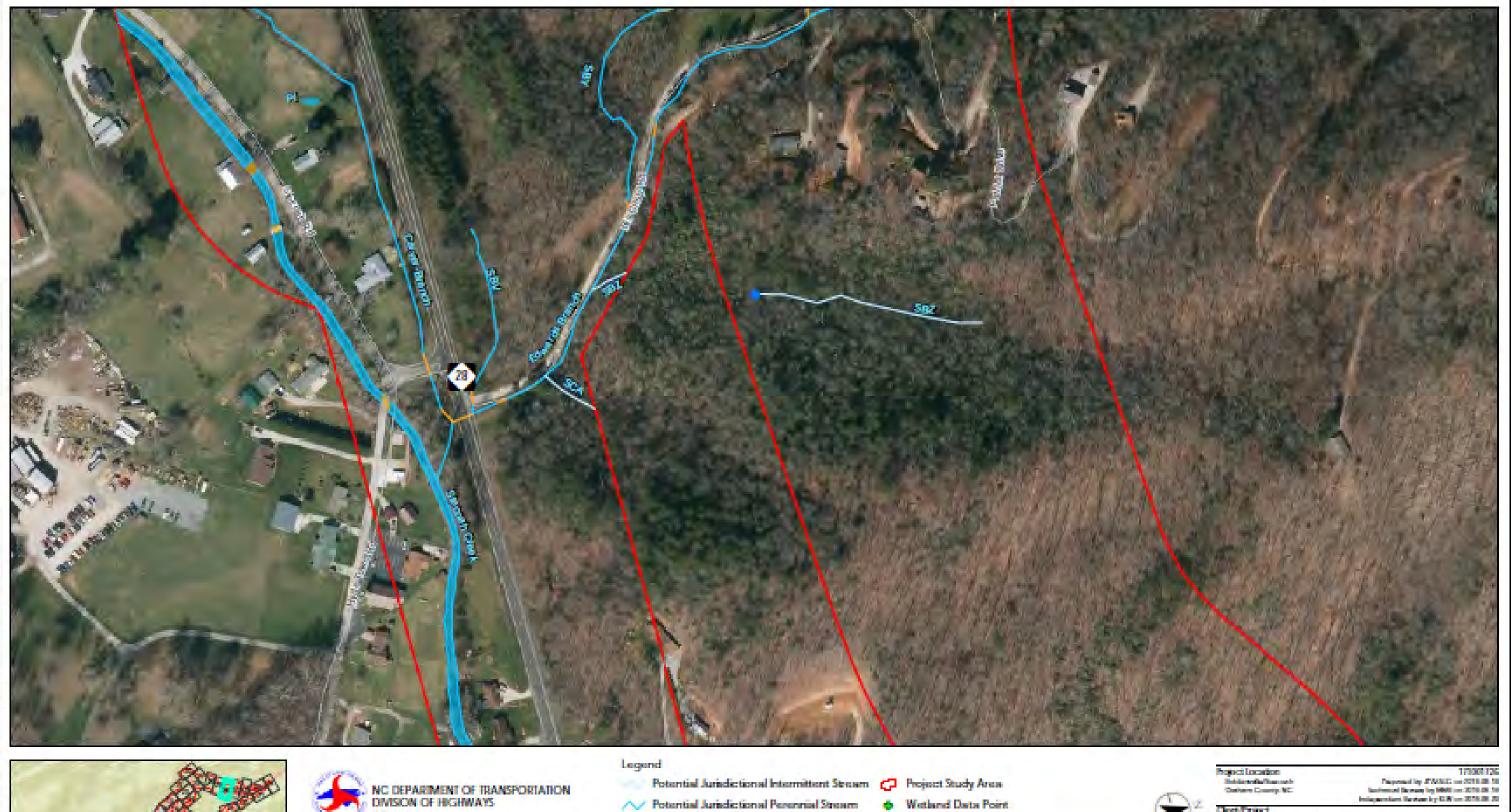
N Potential Jurisdictional Scop

Select Pipes/Bridges/Culverts Potential Jurisdictional Pond

Potential Jurisdictional Wetland

Wetland Data Point

Upland Data Point


Sink Points

Onet/Tract NCDOT - Division 14 Conidor K Project STP: A-0009C

3-29

Potential Jursidictional Features Map

ences to capacitally for this copied in also incoming to the copied to capacity for the copied to capacity for the copied to capacity for the copied to copied to the copied to the copied to the copied to capacity for the copied to the copied to the copied to the copied to capacity for the copied to the copied





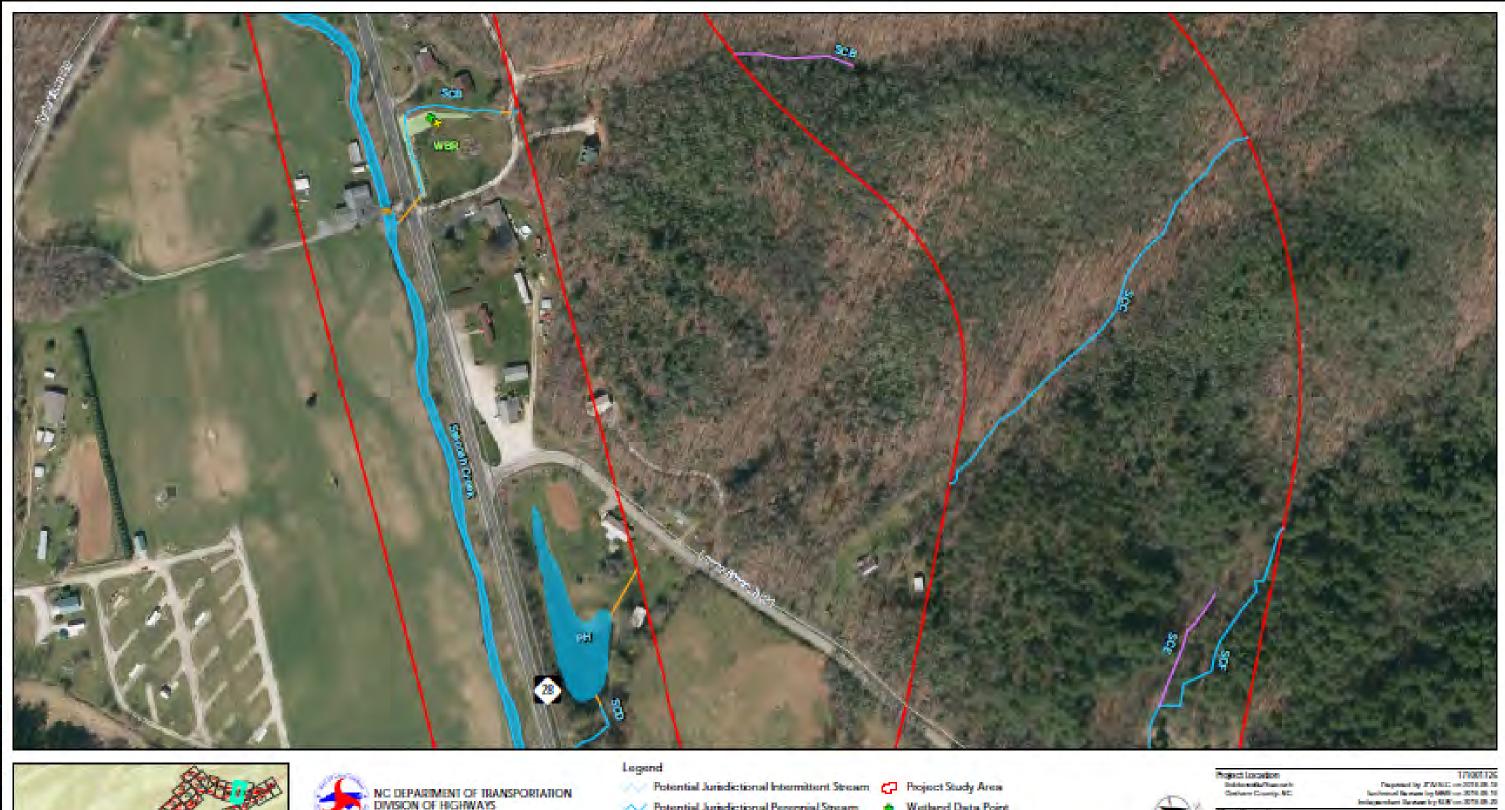
1.2.600 (At original discurrent spe of 11s17)

Commissio System: NAC 1993 Nation and North Commiss (NY 1995 Seed)
 Jamelinian and Dalles attack completed by Nations on June 2.1, No.27, and July 1.75.

A Potential Jurisdictional Scop ✓ Select Pipes/Bridges/Culverts

Potential Juridictional Pond

Potential Juridictional Wetland


Upland Data Point

Sink Points



Clert/Proct NCDOI - Division 14 Corridor K Project SIIP: A-0009C

3-30





NC DEPAREMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14

12.400 (At original document ton of 11x17)

u Typicam - NAD 1980 Natio/Term, North Comban 1974 1988 Frant and Dalmanton morphisms by Nationana Jones J. J. 1917 Land July 1.11.

Potential Jurisdictional Perennial Stream

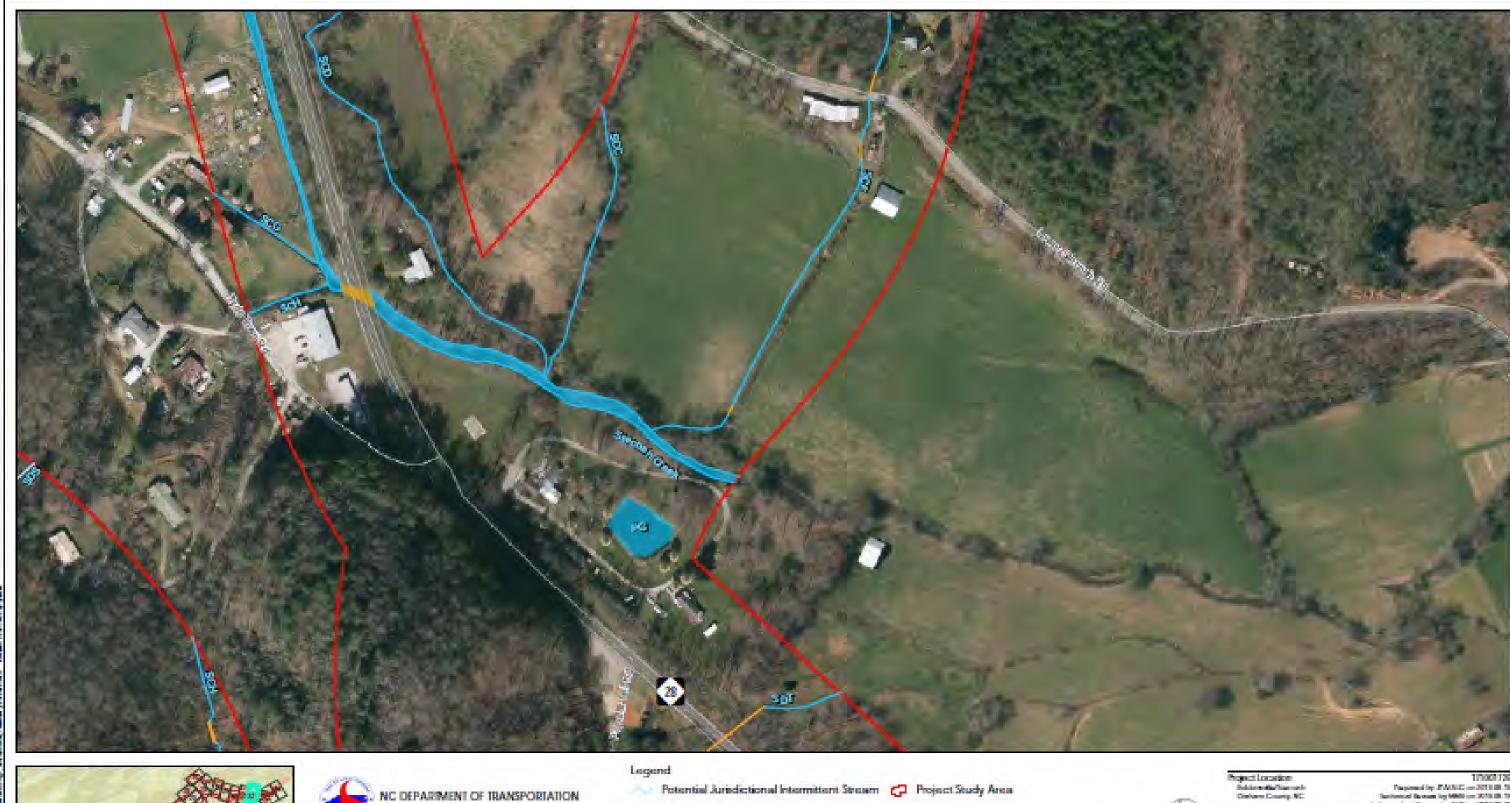
N Potential Jurisdictional Scop

✓ Select Pipes/Bridges/Culverts

Potential Auridictional Pond

Potential Juridictional Wetland

Wetland Data Point


Upland Data Point

Sink Points



Obset/Pejoci NCDOT - Division 14 Corridor K Project SIIP: A-0009C

3-31





NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS

1.2.600 (At oxiginal document size of 11s17)

Potential Jurisdictional Intermittent Stream

Notential Jurisdictional Perennial Stream / Potential Jurisdictional Scop

✓ Select Pipes/Bridges/Culverts

Potential Jurisdictional Pond

Potential Jurisdictional Wetland

Wetland Data Point

Upland Data Point

Sink Points.



171001725.
Trapered by FWHE = 2018 9: before of factor by MHE = 2018 9: to before the factor by EW = 2018 9: 20

Cleat/Paject NCDOT - Division 14 Corridor X Project STP: A-0009C

3-32





NC DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14

12.400 (At original document ster of 11x17)

Consultation Springer BAD 1993 Nation from State Consists 61% 1998 Family 2. January States of Conference on Complete State Consultation on June 2 T. 10.25, and July 2.15.

Potential Jurisdictional Intermittent Stream 😝 Project Study Area

Notential Auticlictional Perennial Stream

// Potential Jurisdictional Scop

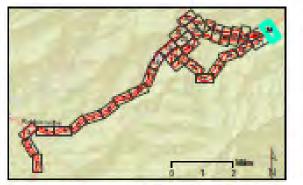
/ Select Pipes/Bridges/Culverts Potential Amidictional Pond

Potential Jurisdictional Wetland

Wetland Data Point

Upland Data Point

Sink Points


Project Location Bullianti-Name Carter Comp NC

Tripotation TABLE in 2018 8.50 Instrument by TABLE in 2018 8.50 Instrument in the control of the

NCDOT - Division 14 Corridor K Project SIIP: A-0009C

3-33







# NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS DIVISION 14



Consideric System: AAC 1992 Setup Serie Series Consider SVS 2000 Fact
 Antolic Series System: completed by Series on Area 2 2, 19.37, and July 1.31. 2015.

Potential Jurisdictional Intermittent Stream 💋 Project Study Area



/ Potential Jurisdictional Scop

Select Pipes/Bridges/Culverts Potential Jurisdictional Pond

Potential Jurisdictional Wetland

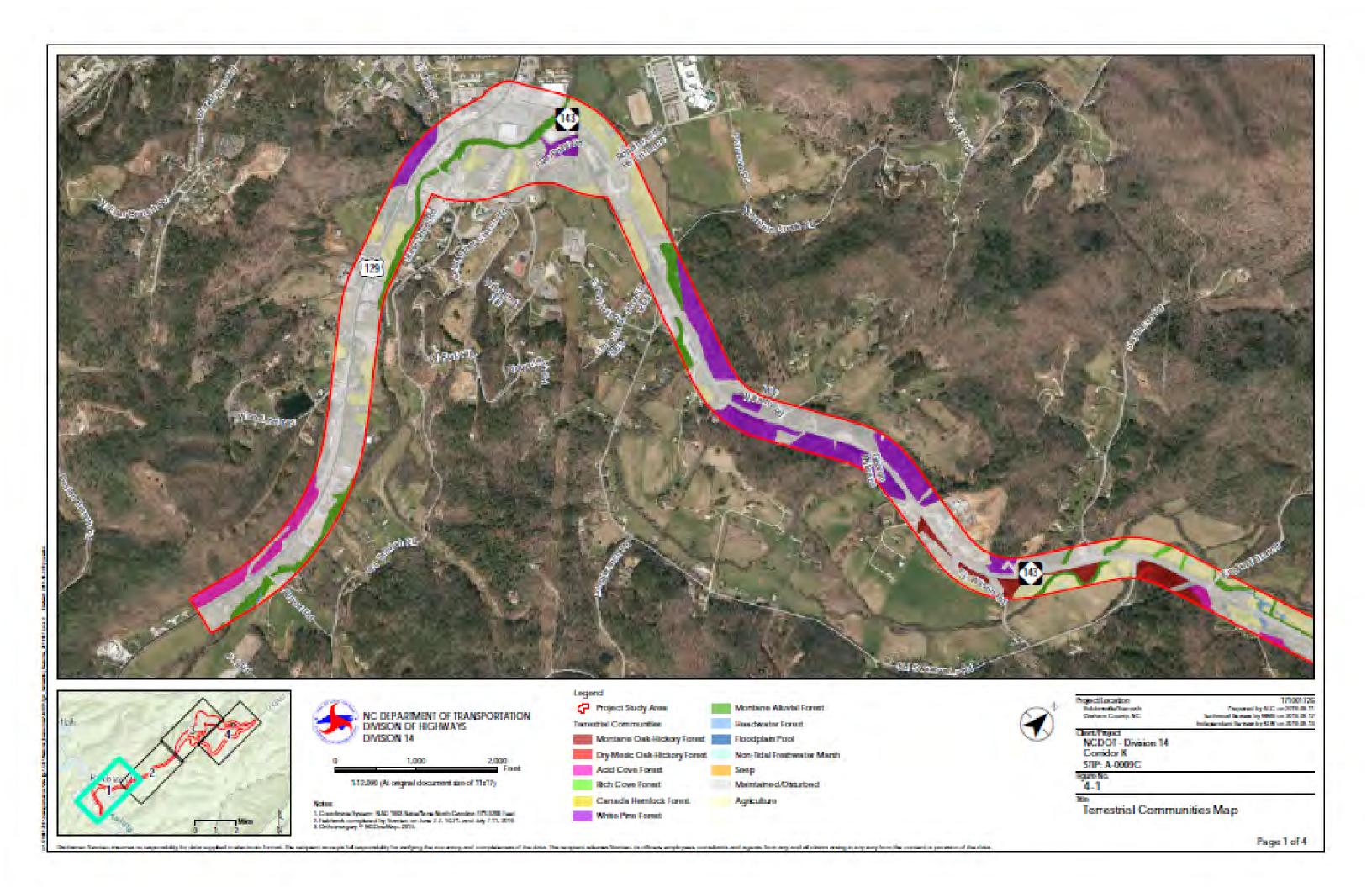
Wetland Data Point.

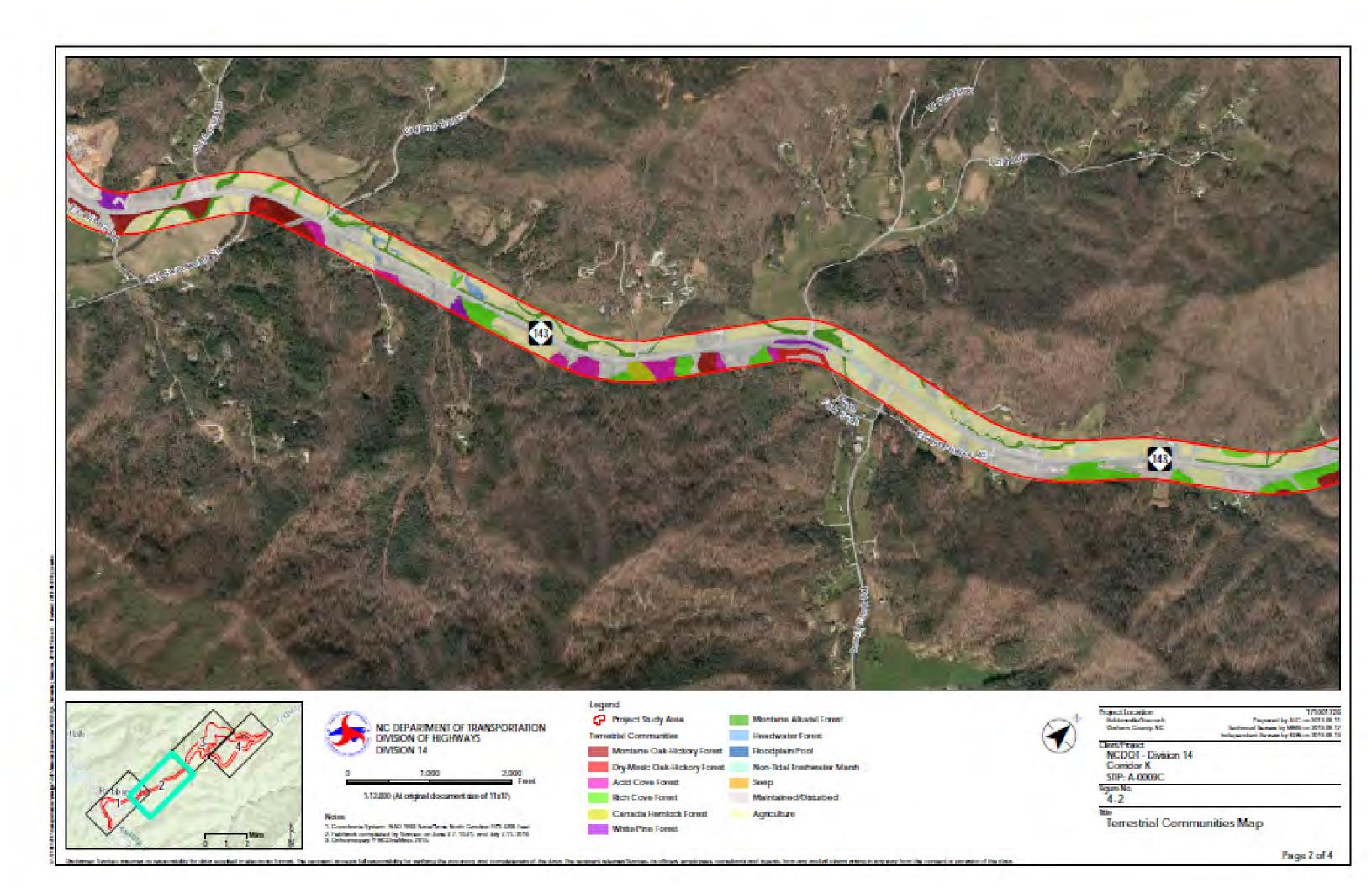
Upland Data Point

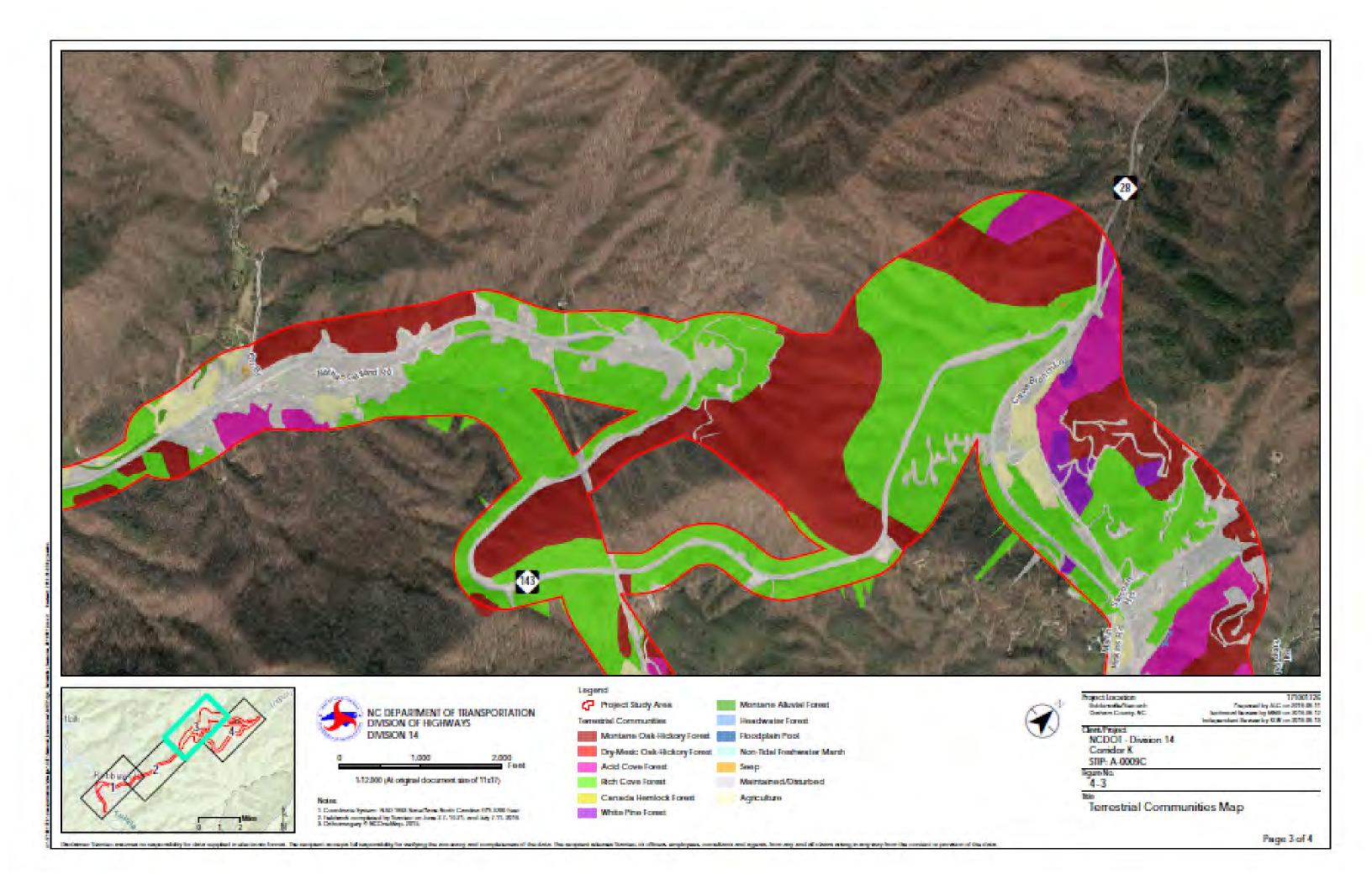
Sink Points

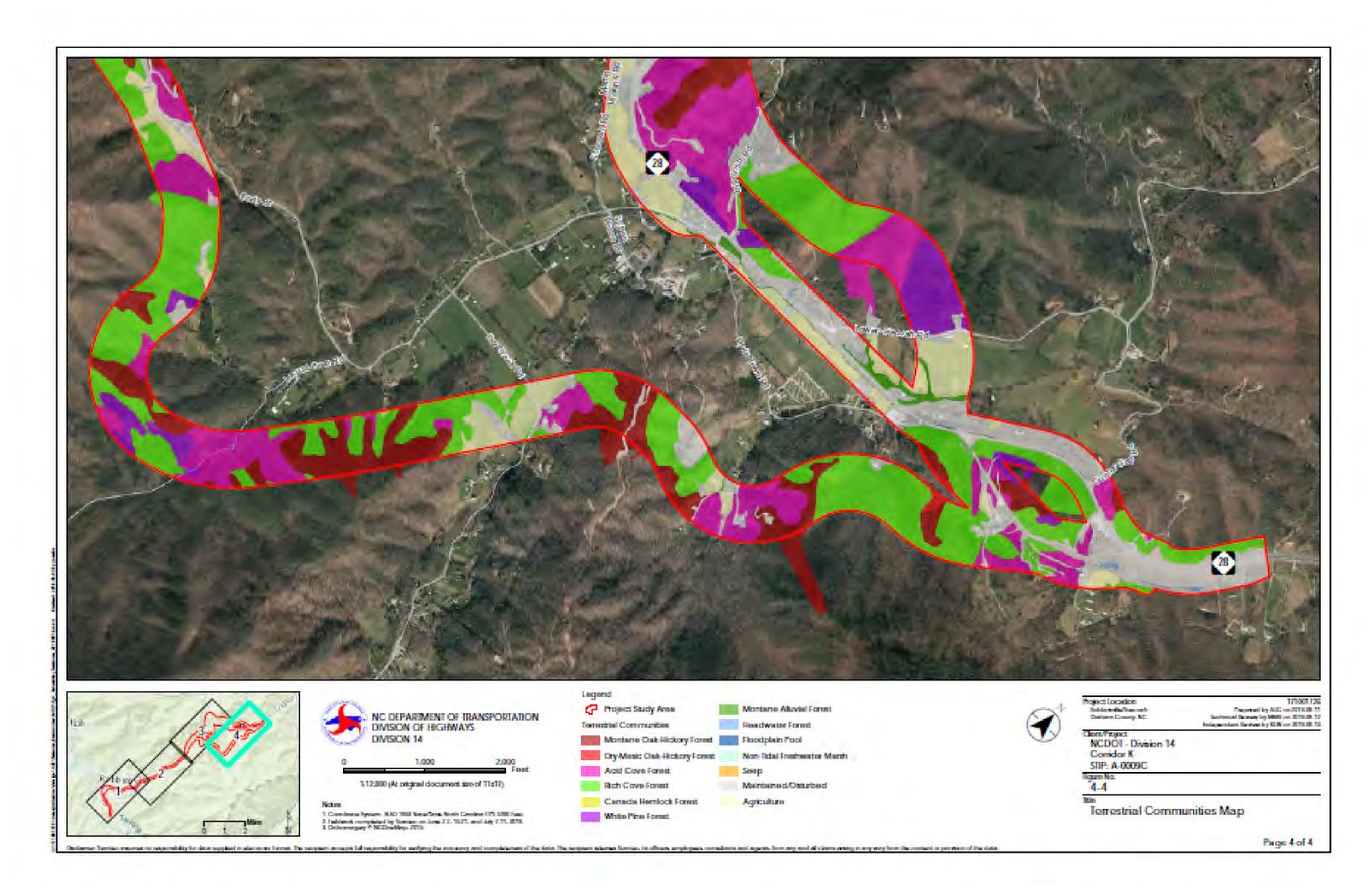


Baltiments/Series In Chalcon Drawing, NC


Proposal by PASSIC == 2016 III 10 to Serious Serious by Will == 2016 III 10 to Serious Serious by Will == 2016 III 20 to to be serious serious by S.W. == 2016 III 20 to 2016 III 2016 III 2016 III


Onet/Paged NCDOT - Division 14 Corridor K Project STIP: A-0009C


Rosen No. 3-34


Potential Jursidictional Features Map

on sequentity to the supplied to also been it has compared to supplied to also been the supplied to also been the supplied to also been a supplied to









## Appendix B

### **Qualifications of Contributors**

Investigator: Amber Coleman, LSS, PWS

Education: M.S. Soil Science, 2000, B.S. Environmental Science, 1998

Experience: Senior Scientist, Stantec, 2005-Present

Environmental Scientist, BLUE: Land, Water, Infrastructure, PA, 2000-

2005

Responsibilities: Project coordination, terrestrial communities assessment and delineation

mapping, document preparation, QAQC

Investigator: Melissa Ruiz, PWS

Education: B.S. Environmental Sciences and Biological Sciences, 1997

M.F. Forestry, 2003

Experience: Environmental Scientist, Stantec, Raleigh, NC, 2005 to present

Environmental Scientist, BLUE: Land, Water, Infrastructure, PA, Raleigh,

NC, 2003-2005

Environmental Educator, U.S. Peace Corps Honduras, 1998-2001

Responsibilities: Terrestrial communities assessment, T/E species assessment, stream and

wetland delineation, stream and wetland assessment, GPS, document

preparation, QAQC

Investigator: Pamela Ferral, CWB

Education: B.S. Fisheries and Wildlife Science 1985

M.S. Wildlife Biology 1996

Experience: Senior Environmental Scientist, Stantec, 2011 to present

Environmental Scientist, Amec, 2008 to 2011

Director of Science and Stewardship, The Nature Conservancy, 1996-2008

Responsibilities: Wetland and stream delineations, GPS, terrestrial communities

assessment, T/E species assessment

Investigator: Justin Ahn, SSIT

Education: M.S. Environmental Assessment 2019, B.S. Environmental Science, 2015

Experience: Environmental Scientist, Stantec, 2018-Present

Natural Resources Professional, S&ME, 2015-2018

Responsibilities: Wetland and stream delineations, GPS, document preparation, GIS

mapping

Investigator: Mike Williams

Education: M.S. Biology, 1996, B.S. Wildlife and Fisheries Science 1991

Experience: Senior Biologist, Stantec, 2017-Present

Senior Biologist, Barge, Waggoner, Sumner and Cannon, Inc., 2014-2017

Biologist/Transportation Specialist, TDOT, 2004-2014

Biologist, TDEC – Natural Heritage, 1999-2000

Responsibilities: Wetland and stream delineations, GPS, terrestrial communities

assessment, T/E species assessment

Investigator: Brittany White

Education: B.S. Environmental Studies, Eastern Kentucky University, 2017

Experience: Environmental Scientist, Stantec, 2017-2019

Responsibilities: T/E species assessments, bat habitat assessments, GPS, wetland and

stream delineations, biological assessment

Investigator: Shane Kelley

Education: B.S. Natural Resource and Environmental Science, University of

Kentucky, 2014

Experience: Environmental Scientist, Stantec, 2014-Present

Responsibilities: T/E species assessments, bat habitat assessments, GPS, wetland and

stream delineations

Investigator: Amanda Voges

Education: M.S. Environmental Studies, 2018, B.S. Environmental Science 2014

Experience: Environmental Scientist, Stantec, 2018 to present

Responsibilities: Wetland and stream delineations, GPS, data preparation

Investigator: Joshua Adams

Education: B.S. Natural Resource Conservation and Management, University of

Kentucky, 2008

Experience: Senior Environmental Scientist, Stantec, 2019 to present

Senior Biologist/Principal, Copperhead Environmental Consulting, 2008-

2018

Responsibilities: Bat habitat assessments, Lead Author of Biological Assessment and

**Biological Evaluations** 

Investigator: Wes Cunningham

Education: B.S. Biology (Botany), Middle Tennessee State University, 2007

Experience: Senior Biologist, Stantec, 2010 to present

Responsibilities: bat habitat assessments, T/E species assessments

Investigator: James Kiser

Education: B.S. Biology, Morehead State University, 1992

M.S. Biology, Coursework Completed, Eastern Kentucky University,

1995

Experience: Senior Environmental Scientist, Stantec, 2006 to present

Responsibilities: T/E species assessments, bat habitat assessments, Biological

Assessment

Investigator: Kristin Weidner, PWS Education: B.S. Chemistry, 2001

M. Environmental Management, 2007

Experience: Senior Scientist, Stantec, Raleigh, NC, 2007 to present

Environmental Scientist, Bermuda Institute of Ocean Science, Bermuda,

2003-2005

Environmental Scientist, ICF, MA, 2001-2003

Responsibilities: document preparation, QAQC

Investigator: Kim Hamlin, PWS

Education: M.S. Natural Resources, 2011

Experience: Environmental Scientist, TGS Engineers, 2016-Present

Environmental Project Scientist, SEPI Engineering, 2012-2016

Responsibilities: Wetland and stream delineations, terrestrial communities assessment,

and T/E species assessment

Investigator: Ryan Elliott

Education: B.A. Biology, 2014

Experience: Environmental Scientist, TGS, 2018-Present

Environmental Scientist, MMI, 2015-2018

Responsibilities: Wetland and stream delineation, terrestrial communities assessment,

GPS, and T/E species assessment

Appendix C

**Bat Survey Report**